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Abstract 

In reflection high-energy electron diffraction (RHEED) of growing surfaces in molecular beam epitaxy (MBE), diffuse scattering 
is generated by atom vibrations, point vacancies and growth islands (or surface roughness). Most of the existing RHEED theories 
have been developed under the first-order diffuse scattering approximation, and thus they are restricted for surfaces whose roughness 
is relatively low. In fact, crystal surfaces grown by MBE are usually rough; the change of surface coverage from 0 to 1 monolayer 
accounts for the observed RHEED oscillation. In this paper, a formal dynamical theory of RHEED has been developed to calculate 
the diffuse scattering produced by both atom vibrations and point vacancies at surfaces. The theory is aimed at recovering the 
multiple diffuse scattering that has been dropped by the distorted-wave Born approximation (DWBA). With the inclusion of a 
complex potential in the dynamical calculation, a rigorous proof is given to show that the high-order diffuse scattering terms are 
recovered in the calculation using the equation originally derived under the DWBA. This conclusion establishes the basis for 
expanding the RHEED theories developed under the first-order diffuse scattering to cases where the degree of surface roughness is 
high, allowing dynamical calculation of RHEED rocking curves for any growing surface. The statistical time and structure averages 
over the distorted crystal potential are evaluated analytically before numerical calculation. The dynamic form factor is calculated 
with consideration of anisotropic surface atom vibration and point vacancies at a growing surface. 

Keywords: Distorted wave-born approximation; Point defect; Reflection high-energy electron diffraction (RHEED); Shirt range 
order; Surface roughness; Thermal diffuse scattering 

I. Introduction 

Reflection high-energy electron diffraction 
(RHEED) is a powerful technique for in-situ obser- 
vation of surface structural evolution during molec- 
ular beam epitaxial (MBE) growth. RHEED 
oscillation is a sensitive technique for monitoring 
layer-by-layer growth on crystalline surfaces. 
RHEED has been routinely used to monitor the 
growth of surface layers, and it has been demon- 
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strated to exhibit high surface sensitivity because 
the electron penetration depth into the surface is 
no more than 1-2 nm. Surface structures can now 
be determined quantitatively using RHEED, in 
which dynamical calculation plays an essential 
role [ 1-3 ]. 

There are three types of elastic scattering theories 
which have been proposed for RHEED calcula- 
tions. The Bloch wave theory developed by Bethe 
[4] for transmission electron diffraction was first 
applied in RHEED by Colella [5] and Moon [6]. 
In this theory, the crystal is considered as a periodic 
repetition of a unit cell, and the surface is a sharp 
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Cut-off of the crystal. The Bloch waves are the 
eigen solutions of the Schr6dinger equation, 
analogous to the case for transmission electron 
diffraction. This theory is unable to take into 
account any irregular surface structures, such as 
defects, the tail of surface potential, and surface 
relaxation. To incorporate surface potential effects 
and surface relaxation in RHEED calculations, 
other multi-slice approaches have been proposed 
in which a crystal is considered periodic in the 
plane parallel to the surface, and non-periodic 
modulations of the potential only occur in the 
direction normal to the surface [7-14] .  The crystal 
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Fig. i. One-dimensional representation of crystal potential K 
the structurally averaged potential V0 = (V) and the deviation 
potential AV= V-Vo. Vo is a periodic function but AVis not. 
Solid circles represent atoms. 

Fig. 2. Schematic diagram showing instantaneous crystal lattices 
due to thermal vibration. Solid circles are the atoms, open circles 
are their equilibrium positions. Each configuration is considered 
as a "static" lattice in the theoretical calculation, and the 
observed intensity is a statistical time average of the intensities 
contributed by all possible lattice configurations. 

is sliced parallel to the surface plane and the 
reflected waves are calculated slice-by-slice from 
the last slice. These are the parallel-to-surface 
multi-slice theories. The last approach uses the 
multi-slice theory originally developed for trans- 
mission electron scattering in a thin crystal. The 
theory has been adopted for RHEED calculation 
if the slice is cut normal to the surface and the 
electron beam azimuth [15].  The crystal and the 
vacuum parts, in which the incident beam 
approaches the surface, are defined as a super-cell. 
The entire space is filled with the repetition of the 
super-cell. The slice is partly filled with atoms, and 
the other part is a vacuum. The transmitted waves 
inside the crystal and the reflected waves in the 
vacuum are calculated simultaneously. 

These theories have been developed for calculat- 
ing the elastic scattering behavior of the incident 
electron in RHEED geometry (for a review, see 
Ref. [16]). In practice, the interaction between an 
incident electron and the atoms in condensed 
matter results in various inelastic scattering pro- 
cesses (for a review, see Ref. [ 17]). Thermal diffuse 
scattering (TDS) or phonon scattering is the result 
of atomic vibrations in crystals. This process does 
not introduce any significant energy loss (<0.1 eV), 
smaller than the energy spread of the electron 
emission source, but produces large momentum 
transfer. Valence loss (or plasmon for metals and 
semiconductors) excitation, which characterizes the 
transitions of electrons from the valence band to 
the conduction band, involves an energy loss in 
the range 1-50 eV. This inelastic scattering process 
is particularly important in RHEED because more 
than 50-90% of the electrons have lost the energy 
of plasmons due to the long-range interaction of 
the electron with the specimen [ 16]. Atomic inner- 
shell ionization is excited by the energy transfer of 
the incident electron, resulting in an ejected 
electron from a deep-core state. This process is a 
signature of the corresponding element, and thus 
it can be used to determine the specimen chemical 
composition. In addition to these characteristic 
energy-loss processes, continuous energy-loss 
spectra can be generated by an electron which 
penetrates into the specimen and undergoes colli- 
sions with the atoms in it. The electromagnetic 
radiation produced is known as "Bremsstrahlung", 
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leading to continuous energy loss that increases 
with increasing scattering angle. X-rays are usually 
generated. The other continuous process is the 
energy transfer due to collision of the incident 
electron with an electron belonging to the speci- 
men. This process is known as "electron Compton 
scattering" or "electron-electron (e-e) scattering". 
All of these processes make a contribution to the 
RHEED pattern. 

Recent progress in instrumentation has made it 
possible to filter away the contribution in the 
RHEED patterns made by electrons that have 
suffered energy losses larger than a few eV 
[18-20], but the TDS electrons remain. If one 
only considers the Bragg reflections, TDS is equiva- 
lent to introduce an absorption function in the 
elastic calculation, but the thermal diffusely scat- 
tered electrons still remain in the diffraction 
pattern, and are distributed in the angular ranges 
between Bragg beams. Inclusion of TDS in dynami- 
cal calculation has a long history; substantial 
research was performed when the dynamical theory 
for low-energy electron diffraction (LEED) was 
developed [21-26]. The theory was even able to 
cover multiple elastic scattering before and after 
inelastic scattering [26,27]. In RHEED of growing 
surfaces in MBE, in addition to TDS, distorted 
surface structure plays a vital role in producing 
diffuse scattering, and various theoretical 
approaches have been developed to calculate the 
diffuse scattering patterns [28-33] in order to 
quantify the RHEED oscillation curves 1-34]. 
These theories are essentially based on the first- 
order perturbation theory, in which only the A V 2 
term is considered in dynamical calculation. This 
approximation is equivalent to the distorted-wave 
Born approximation (DWBA) [35] used in LEED 
calculations [26,27], which holds if the distorted 
potential is much smaller than the crystal potential. 
However, in RHEED of growing surfaces, the 
surface coverage changes from 0 to 1 and the 
surface can be very rough, so that the distorted 
potential is compatible to the crystal potential. It 
is therefore essential to develop a dynamical theory 
which can be applied to cases where the surface is 
very rough. This is the objective of the current 
paper. 

In this paper, we first outline a general approach 

for calculating diffuse scattering under the DWBA. 
Then, this theory is modified to include the high- 
order diffuse scattering terms by introducing a 
complex potential in the calculation of the elastic 
wave (Section 2). A rigorous proof is given to 
show that this approach does work, making it 
possible to expand the existing RHEED theories 
accounting for the high-order diffuse scattering. 
Then, details are given for calculating RHEED 
intensity (Section 3). In Section 4, applications of 
this general approach for RHEED are presented 
in the schemes of Bloch wave theory and the 
parallel-to-surface multi-slice theory. Then, the 
dynamic form factors are derived for describing 
thermal diffuse scattering, including anisotropic 
atom vibration behavior and point defect scattering 
(Section 5). 

2. A multiple diffuse scattering theory 

To include the effect of point vacancies and 
TDS in RHEED calculation, one uses a general 
approach in which an average crystal structure is 
introduced 1-31,36,37]. The crystal potential V(r,t) 
is written in the form 

V(r,t) = Vo(r) + A V(r,t), (1) 

where Vo(r)--(l/(r,t))ts is the crystal potential dis- 
tribution function for the average lattice, defined 
to be time-independent and periodic, ()ts indicates 
the statistical time and structure average, and A V(r) 
represents the deviation from the average lattice, 
which is non-periodic and time-dependent (for 
TDS). This distorted wave approach is shown 
schematically in Fig. 1 for a one-dimensional point 
vacancy case. The statistical structure average 
takes into account the point vacancies distributed 
in the bulk and surface lattices. 

In high-energy electron scattering, since the 
interaction time between an incident electron with 
the specimen is much shorter than the vibration 
period of the atom, the crystal atoms are seen as 
if stationary by the incident electron. This is the 
"frozen" lattice model which has been used to treat 
TDS, as shown schematically in Fig. 2. The main 
task involved in the theory is to perform the 
statistical time average over the electron diffraction 
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intensities for a vast number of different thermal 
vibration configurations. The first objective in this 
theory is to find the scattered electron wave for a 
given frozen lattice configuration. We start from 
the time-independent Schr6dinger equation with 
relativistic correction 

h 2 V 2 - e ~ A V - E ) g t = O .  
- ~omo - e v V °  (2) 

where E=  eUo[ 1 +(eUo/2moc2], Uo is the acceler- 
ating voltage of the electron gun, the relativistic 
factor ~ = ( 1 - vZ/c z) - 1/2, and v is the electron veloc- 
ity. Eq. (2) can be converted into an integral equa- 
tion with the use of the Green's function 

gJ(r,t) = gJo(Xo,r) + ~dr, G(r, rl)[eyA V(r,,t ) gJ(r,,t)], 
(3) 

where G is the Green's function satisfying 

( -  2mo hz---~- V2 - e ~ V ° - E )  G(r'rl)=6(r-rO' (4) 

and ~o(Ko,r) is the elastic wave scattered by the 
periodic, time-independent average potential Vo 
due to an incident plane wave with wave vector 
Ko, which satisfies 

( - 2moh2~ V Z - e ,  V o - E ) ~ o = O .  (5) 

Eq. (3) can be solved iteratively, but the con- 
vergence of the series depends on the relative 
magnitude of A V with respect to Vo. The most 
common approximation adopted in the literature 
[21-33] is the DWBA, in which 7 t is replaced by 
~o, equivalent to the first-order diffuse scattering 
approximation. Thus Eq. (3) is approximated as 

gJ(r,t) ,~ ~o(Ko,r) + ~ dr I G(r, rl)[e~A V(r,,t) 7to(rl,t)]. 
(6) 

This equation holds if the disorder of the surface 
is low, so that ]A 111<< Vo. For a growing surface in 
RHEED, however, the surface roughness can be 
very high and this approximation fails in most 
cases. It is thus necessary to develop a theory 
which can recover the high-order diffuse scattering 
terms dropped by the DWBA. This is the focal 
point of the following approach. 

To compensate the dropped high-order diffuse 
scattering terms in Eq. (6), a complex potential V 
is added in Eq. (5) 

_ h2 V 2_eyVo_eTV,_  E)7,o=O , 
2too 

(7) 

and V is chosen in such a way that the wave 
function ~u 0 determined by Eq. (6) is the exact 
solution of Eq. (2). The high-order diffuse scatter- 
ing beyond the DWBA can be recovered if a unique 
solution of V can be found. This is the main idea 
behind this method. Substituting Eqs. (6) into (2) 
and using Eq. (7), V is required to satisfy (see 
Appendix A) 

[V' gJo] = eT~ dr, [G(r, rl)zJ V(r,t)A V(rl,t) gJo(Ko,rj]. 
(8) 

It is apparent that V is a non-local function and 
it has the exact form as the optical potential 
introduced in elastic scattering to cover the effects 
arising from inelastic scattering [38-40]. Before 
we proceed, the first objective is to prove that the 
optical potential V given by Eq. (8) can be applied 
to recover the high-order diffuse scattering terms 
drooped when 7"(rl,t) is replaced by g'o(Ko,rl) in 
deriving Eq. (6). Starting from the integral form of 
Eq. (7) with the use of Green's function and itera- 
tive calculation, the elastic wave is expanded as 

~o(r,t) = ~°)(Ko,r) + ey~ dr, 

× 6(r, rl)[V'(r,) %(Ko,r,)] 

= g~o°)(Ko,r)+(eT) z ~ dr1 G(r, rl) 

~dr2[G(rl,r2)A V(r,,t)A V(r2,t) 7Jo(Ko,r2)] 

= ~o°)(Ko,r)+(eT) 2 ~ dr, S dr2 G(r,r,) 

X G(r 1,r2)A V(vI,t)A V(rz,t) ~°)(K0,r2) 

+(e?) 4 S dr, ~ drz ~ drs ~ dr4 G(r, rl) 

× G(rl,r2)G(r2,ra)G(rs,ra)A V(rl,t)A V(r2,t) 

x A V(rs,t)A V(r,,t) g~°)(K0,r4) +. . .  (9) 

where 7 ~°) is the Bragg scattered wave due to the 
average periodic lattice at the absence of V (e.g. 
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no absorption) 

- 2m---~o V Z - e v V ° - E  ~°)=0"  (10) 

This equation can be solved using conventional 
dynamic electron diffraction theory [4-15] .  
Substituting Eq. (9) into Eq. (6), the total scattered 
wave is 

~(r,t) = ~°)(Ko,r  ) + (ey) S dr, 

x G(r, rOA V(rl,t) ~o°)(Ko,r0 

'[-(e~)2 I drl ~ dr2 G(r, rl) 

× G(r l,r2)zJ V(r l,t)A V(r2,t) Y'ao°)(Ko,r2) 

+ (eT) 3 ~ dr, ~ dr z ~ dr3 G(r,r,)G(rl,rz) 

x G(r2,rs)A V(rl,t)A V(r2,t)A V(r3,t) ~ta°)(Ko,rs) 

+(eT)' j" dr, I dr2 ~ dr 3 I dr, G(r, rl)G(Y1,Y2) 

x G(r2,rs)G(rs,ra)A V(rl,t)A V(r2,t ) 

× A V(r3,t)A V(r4,t ) ~-~°)(K0,r4) + . . .  (11) 

This equation is the exact iterative solution of 
Eq. (2). The third term in Eq. (11) is taken as an 
example to show its physical meaning. The Bragg 
scattered wave is diffusely scattered at r 2 by 
A V(r2,t). The diffusely scattered wave is elastically 
scattered by the crystal lattice while propagating 
from r 2 to rl [G(rl,r2)], then second-order diffuse 
scattering occurs at rl(A V(rl,t)). Finally, the double 
diffusely scattered wave exits the crystal at r after 
elastic scattering when propagating from r 1 to 
r[G(r,rl)]. The integrals over rl and r 2 are to sum 
over the contributions made by all the possible 
scattering sources in the crystal. 

Therefore, the multiple diffusely scattered waves 
are comprehensively included in the calculation of 
Eq. (6) if the optical potential V given by Eq. (8) 
is introduced in the calculation of ~o [Eq. (7)]. 
This is a key conclusion which means that, by 
introducing a proper form of the optical potential, 
the multiple diffuse scattering terms are automati- 
cally included in the calculation using Eq. (6), 
although it was derived under the DWBA. This 
result establishes the basis for expanding the exist- 
ing diffuse RHEED theories developed under the 
DWBA to a surface with a high degree of disorder. 

This conclusion can be phenomenologically 
understood as follows. The optical potential first 
introduced by Yoshioka [39] was to include the 
effect of inelastic scattering on the elastic scattering. 
If the transition from the elastic state to an inelastic 
state is denoted by a transition matrix H'no, the 
transition from the inelastic state to the elastic 
state is H'o,, which equals [H'no]*. This simply 
means that the optical potential has a register 
relation with the inelastic scattering and it "knows" 
the nature of the inelastic excitation. If we can use 
this potential to correct the "absorption" effect 
produced by the inelastic scattering, the potential 
can be applied inversely to retrieve the inelastic 
scattering component. Since there is no energy loss 
associated with diffuse scattering, the retrieval of 
high-order diffuse scattering terms by V is ade- 
quate, as proved rigorously in the approach 
described above. 

If the Green's function is replaced by its form in 
free space, the approximation adopted by Yoshioka 
[39] 

2mo exp (2rdKolr--rd) 
G°(r'rl) = h 2 4~lr- r l l  ' (12) 

Eq. (11) is approximated to include all of the 
orders of diffuse scattering except the dynamical 
Bragg diffraction after each diffuse scattering. In 
this paper, this approximation is not assumed. 

3. Multiple diffuse scattering in RHEED 
calculation 

In RHEED, the observation point is considered 
at infinity with respect to the interaction region of 
the beam with the specimen. The coordinate system 
used for the following analysis is shown in Fig. 3, 
where the incident beam is nearly parallel to z- 
axis and the x-axis is inward perpendicular to the 
surface. The observed RHEED pattern is the mod- 
ules square of the two-dimensional Fourier trans- 
form (FT) of ~(r), 

I(Ub) = ([FT [ ~(x,y,~)]i2> 

= (I~o(Ko,ub,t)+ ~ dr, a(ub,rl) 
x [eyA V(rl,t) ~(ra,t)]lZ)t~, (13) 
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Inc " 
Reflected beams 

Fig. 3. The coordinate system used in RHEED theory. The inci- 
dent beam is nearly parallel to the z-axis, and the x-axis is 
perpendicular to the crystal surface inward. 

where ub = (Ux, u r) is a two-dimensional reciprocal 
vector perpendicular to the incident beam direc- 
tion, q~o(Ko,Ub,t) = FT [ ~o(Ko,x,y, oo) and G(Ub,r,) = 
FT [G(x,y,z = o%r0]. The statistical time and struc- 
ture averages are added to obtain the contribution 
made by various lattice configuration of the dis- 
torted structure. In this section, we first outline the 
theory for calculating the intensity of multiple 
diffusely scattered electrons using the theoretical 
scheme described in Section 2. The expansion of 
Eq. (13) gives four terms 

I(Ub) = (l~o(Ko,Ub,t)2>ts + ey ~ dr  I (~(Ub,ri) 

× < [~0*(K0,Ub, t)/I V(rt,t) ~O(rl,t)] >ts 

+ ey ~ drlG*(ub,r,) 

x <[~o(Ko,Ub, t)A V(rl,t ) ~o*(rl,t)] >ts 

+ (ey) 2 ~ dr1 S drzG(ub,rOG*(ub,r2) 

x (AV(rl,t)AV(r2,t)~o(rl,t)~o*(r2,t)>t~. (14) 

From the definition of the distorted potential '4 V, 
('4V')ts=0, thus, the average of the odd order 
terms of ,4 V approximately vanish, e.g. 
<'4 V3 >ts ~ O, <zJ V 5 )ts ~ 0 etc. This means that some 
of the interference terms between different orders 
of diffuse scattering are treated as incoherent. This 
is an excellent approximation, and no scattering 
intensity is dropped (see Appendix B for proof). 
Also consider the fact that the expansion of 

~o(r,,t) contains only even order terms of A V(i.e. 
AV 2, AV 4 etc.) (see Eq. (9)), the second and the 
third terms (which are the cross terms of the Bragg 
reflections with the diffuse scattering) in Eq. (14) 
approximately vanish 

I(Ub) ~ (l~o(Ko,ub,t)lz>ts 

+(eT) 2 ~ dr, ~ dr2 (~(ub,r,) 

x t~*(ub,r2)('4 V(rl,t)A V(r2,t) 

× To(r,,t)~o*(r2,t)>ts. (15) 

Consider the fact that the expansion of ~o(r,,t) 
contains only even orders of LIV terms. We can 
split the average by an approximation of 

<'4 V4>ts ~ <'4 V2>ts<A V2>ts, 

( '4  V6>ts ~ (zJ V2 >ts </'l V2>ts<'4 V2>ts, 

etc., (16a) 

and 

( A V(r, t )A V(rz,t ) ~o(r,,t ) ~o*(r2t))ts 

,'~ ( ~ V(rl,t )zJ V(rzt ) > ts ( To(r,,t ) ~r/o*(r2,t)>ts. 

Hence, 

(IqSo(Ko,ub, t)l>t~l(q~o(Ko,Ub,t)])ts,I 2, (16b) 

where (~o(Ko,ub, t)]>ts is the 2D Fourier transform 
of ( ~ g o ( K o , r ) > t ~  a t  z = ~ ,  satisfying 

( -  2mo h2~ V 2 - e y V ° - E )  <~°>ts 

= (eY) 2 S dr1 [G(r, rl)<Z V(r,t) 

× A V(r,,t))ts ( ~Jo(Ko,ri)>ts. (17) 

The approximation made in Eq.(16a) does not 
produce any significant error, a rigorous proof 
shows (see Appendix B) that the entire scattering 
intensity is preserved. The theory for solving 
Eq. (17) is given in Section 4. The diffracted inten- 
sity is 

/(Ub) ~ I<~o(Ko,ub, t)] >ts 12 

+ (ey) 2 S dr, I dr2 G(ub,r,) 

X G*(Ub,r2)<'4 V(rl,t)/I V(r2,t)>t~ 

x ( ~o(r,,t)>t~( ~o*(r2,t)>t~, (18) 
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and the following expansions are provided to 
illustrate the physical meaning of Eq. (18) 

({~0(Ko,Ub, t)] >ts ~--- {~(00)(XO,Ub) "q- (e~) 2 I dr, I dr2 

X d(ub,rl)G(rl,r2)(z~ V(r,,t)A V(r2,t))ts ~o°)(Ko,rz) 

+ (e?)' f dr1 I drz I dr3 I dr4G(Ub,r,)G(rl,r2) 

x G(r2,r3)G(r3,r4)(d V(rl,t)A V(r2,t))ts 

x (A V(r3,t)d V(r4,t))t~ ~o°l(Ko,r4) +. . .  (19a) 

( ~o(r,t))t~ = ~°)(Ko,r) + (e?) 2 ~ drl S dr2 

x G(r, rl)G(rx,r2)(A V(rl,t)A V(r2,t))t~ ~°)(Ko,r2) 

+(e?) 4 ~ drl ~ dr2 ~ Ors I dr4 G(r, rl)G(ri,r2) 

x G(r2,r3)G(r3,r4)(A V(rl,t)A V(r2,t))ts 

x (A V(r3,t)zJ V(ra,t))ts ~o°)(Ko,r4) +. . .  (19b) 

and q~o°)(Ko,ub,t)=FT[~o°)(Ko,x,y,~)]. The even 
order terms contained in (¢~o(K0,u,t)])ts denote 
the absorption effect created by diffuse scattering 
on the Bragg reflections. This is the conventional 
absorption effect. The second term of Eq.(18) 
covers the contributions of the diffusely scattered 
electrons, which are distributed at non-Bragg posi- 
tions. It is apparent that all of the high-order 
terms (A V2,zJ V 4, etc.) have been included. In prac- 
tice, the numerical calculation is directly performed 
using Eq.(18) without using the Born series as 
given in Eqs. (19a) and (19b). 

For Fraunhofer diffraction, it can be proved that 
the two-dimensional Fourier transform of the 
Green's function is [41] 

a(/.g b,r,) = A~ ~o°)(- K, rl), (20) 

where g~°)o(-K, rO is the solution of the 
Schr6dinger equation [Eq. (10)] for an incident 
plane wave of wavevector ( -K)  with K =  Ko + Ub 
and 

{ imo exp[27riKzz] } 
Az = rch z K~ " 

The negative sign of the wave vector means that 
the electron strikes the crystal along the neg- 
ative z-axis direction. For a general case, 
(A V(rx,t)A V*(r2,t))ts is written into a Fourier trans- 
form form 

(A V(rl,t)A V*(r ,t)), = I dQ S d ~  

x exp['2~zi(rl. {}-r2- Q')]S(Q,Q'), (21) 

where S(Q,Q') is defined as the diffuse scattering 
dynamic form factor, to be determined for different 
processes in Section 5. Thus, Eq. (18) is rewritten 
as 

I(Ub) = I(q~o(Ko,Ub,t))tsl 2 + D ff dQ I d ~  S(Q,~) 

X {I drl [exp (2zd(r I "Q) 

x ~o°)( - Ko -//b,rl) ~o(Ko,rl)] 

x 5 dr2 [exp (-2rdr2' Q' ) 

x ( 7~°)*( - / t o  - ub,r2)>ts( g/o*(Ko,rz))t~]}, (22) 

where D = eZ~Zmo[2rcZh2E cos 2 ~0o]- 1, and fP0 is the 
angle between K and the z-axis. One must remem- 
ber that this equation is not restricted by the 
DWBA, and the multiple scattering terms are 
included. Eqs.(17) and (22) are the core of the 
entire calculation. The unique advantage of 
Eq. (22) is that the time and structure average are 
performed analytically before numerical calcula- 
tions. It has been proved that the calculation using 
Eqs.(6) and (17) preserves the total scattering 
intensity (see Appendix B). Thus, the approxima- 
tion made in deriving Eq. (16) does not introduce 
any appreciable errors at all. The applicability of 
this theory is not restricted by the magnitude of 
the surface roughness. For a highly disordered 
surface, the optical potential V approaches atomic 
potential and its real and imaginary components 
are both important. 

4. Applications 

4.1. The Bloch wave theory 

The Bethe theory is a classical approach to 
dynamical electron diffraction, and it is the ideal 
approach for treating the non-local potential. We 
start with this theory to illustrate the basic pro- 
cedures of applying Eqs. (17) and (22) for RHEED 
calculations. In the Bloch wave representation, the 
elastic scattering wave of incident wave vector K 
is a linear superposition of Bloch waves B~(K,r) 
[1] 
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(Tto(K,r))= ~ cq(K)B~(K,r), (23a) 
i 

where ~i(K) are the superposition coefficients deter- 
mined by the boundary conditions, Bi(K,r) is the 
ith eigen solution of Eq. (17), which is generally 
given by 

B~(K,r) = ~ C~)(K) exp[2rd(K+g), r+ 2niv~x]. 
g 

(23b) 

The coefficients C~°(K) and eigenvalue vl are deter- 
mined by an eigen equation in the Bloch wave 
theory. Substituting Eqs. (23b) into (17) and using 
the inverse Fourier transform, a set of coupled 
algebraic equations are obtained 

[ 2KSg - 2 (K x + gx)V - ~,2-] C~) 
2ymoe 

+ h---y- ~ [Vg-h+ v'")lr")-t~-ghj~h --", (24) 
h 

where Vg are the Fourier coefficients of the crystal 
potential and those of the complex potential V' 
a re  

V,~) h = e~ ~ dQ ~ dQ' S(Q,Q') 
v~ 

X a ( k  i -3vg- -  Q,Q' - k z - h ) ,  (25) 

V~ is the volume of the crystal, and G(u,v) is the 
double Fourier transform of G(r,rO. If G is replaced 
by Go, the Green's function in free-space, after 
some calculation, Eq. (25) gives [39] 

• emoy 
V'~ ) ' "  2rc2h2Vc 

S ( g + k i _ u j t + k i _ u  ) 
x .I" dT(u) u ~ _ K ~  ° 

+ i ~ 0  S da(u) S(g + k , -  u,h + k , -  u) , (26) 

where the integral z(u) is over all reciprocal space 
u except a spherical shell defined by lul = Ko ,  and 
the integral a(u) is over the Ewald sphere surface 
defined by lul = g o .  This function is complex, and 
its real part may not be too small in comparison 
to the crystal potential, particularly for a rough 
surface in RHEED. The imaginary component is 
just the absorption potential that has been fre- 

quently used in dynamical calculations. Eq. (26) is 
the familiar form of absorption potential in high- 
energy electron diffraction [39]. However, this 
potential is not suitable for recovering the high- 
order scattering terms, a calculation of V~ ) with 
consideration of dynamic diffraction is necessary 
(Appendix C). 

For the diffuse scattering intensity, substituting 
Eqs.(23a) and (23b) into the second term of 
Eq. (22), and performing the integrals, the diffuse 
scattering intensity at Ub in reciprocal space is 

I o(ub) = D ~  ~, ~, ~ ~ ~ ~ ~, 
i j 0 jt g h gl hi 

× O{i, ( -  X)~xj, *(-- X)o~i, (Ko)o~j, *(go)  

t'.t(i)i ][r'W'.t(j)* [ ]~r~g'~(it)gl[r "~['~(jt)Ilg" "~ 

x ~ dQx S dQx' S(Q,~)  

× ~ dxx exp[27ti(Q~ +gx +g~'+ vi + v~,)x~] 
0 

× 7 dx2 exp[-- 2~i(Qx' + h~ + h~' + vj + vj,)x2], 
0 

(27a) 

where 
Qt = ut - g t  -gt ' ,  (27b) 

Qt' = ut - ht -/It  ', (27c) 

K= Ko + Ub, g and h are reciprocal lattice vectors, 
and the subscript t means the tangential compo- 
nent parallel to the (y,z) surface plane. {~, C~ i)} 
and {~i', C~ i)} are the solution of Eq. (24) with and 
without the inclusion of V~ ), respectively. The 
sums of i, j, i' and j' are over all the Bloch waves, 
and the sums of g, h, g' and h' are over all the 
reciprocal lattice vectors. In Eq. (27a), the as and 
Cs coefficients characterize the dynamical diffrac- 
tion before and after diffuse scattering. Eqs. (27b) 
and (27c) are the results of momentum conserva- 
tion parallel to the surface. 

4.2. The parallel-to-surface multi-slice theories 

If the non-periodic modulation of the potential 
occurs only in the direction normal to the surface, 
the parallel-to-surface multi-slice theories [7-14] 
are most useful for quantitative RHEED calcula- 
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tions. In this model, the crystal potential is written 
as 

Vo(r)= ~ Vg(x) expE2nig.p], (28) 
g 

where p = (y,z) is a real-space vector parallel to the 
surface, and the Fourier coefficients Vg(x) are x- 
dependent, which can be modified to include sur- 
face relaxation and surface potential. The solution 
of Eq. (17) can be written as 

( ~o(K,r) ) = ~, ~g(K,x) exp[Zni(Kt d-gt)"p], 
g 

(29) 

where Kt and gt are the tangential components of 
K and g, respectively, parallel to the surface. To 
simplify the calculation, the complex potential is 
approximated as a local function so that ~u o can 
be taken out of the integral, Eq. (17) becomes 

( -  2m0 h---~-2 [72 - e y V ° - E )  ~°  

(e72[~ dr, [G(r,r,)(zl V(r,t) 

X z~ V(r l,t))ts ] (~lo(Ko,r)) .  (30)  

This approximation holds for most of the cases in 
RHEED [42]. Substituting Eqs. (29) into (30), a 
double differential equation is obtained 

d 2 ~,(K,x) + ~ ~,(K,x)  
dx z 

2ymoe 
+ h--T- E [V,_h(x) 

h 
+ V'gh(X)] 7"h(K,x) = 0, (31a) 

where 

= 4n2 [K 2 -(Kt  +gt)2], (31b) 

e7 
V'gh(X) = ~ ~ dQ I dQ' S(Q,Q') 

x ~ dpj" dr, e x p [ -  2Eip • (K t - k - g  t - -  Q)] 

x exp[-2rdrt  "(Q'-Kt-ht)]G(x,p,r0. (31c) 

S¢ is the area of the crystal surface stroke by the 
beam. The calculation of V'sh for a general case is 
given in Appendix C). Eq.(31a) is a coupled 
second-order differential equation, the solutions of 
which are the amplitudes of the diffracted beams. 

Eq. (31a) can be solved numerically using various 
techniques [7-14], all of which are based on the 
same physical approach of cutting the crystal into 
slices parallel to the surface, but they are slightly 
different in mathematical treatments. The key step 
in each of these approaches is to transform the 
second-order differential equation into a first-order 
differential equation. 

Our task here is to calculate the diffuse scattering 
pattern. Substituting Eq. (29) into the second term 
of Eq. (22), and performing the integrals, one has 

I D(llb)=O Z 2 Z Z ~ dX1 ~ dX2 
g h g/ hr 0 0 

× K, xx x, x2)  e,,(Ko,Xl) 

x 

x S dQx ~ OQ'~ S (Q ,~ )  

x exp[ 2rci(Qxxl - Q~x2)], (32a) 

where 

Qz = - g z  -g'z and Qr = ur - g y  -g'r, (32b) 

Qz, = - hz - h'~ and Qr, = ur - hy - h' r, (32c) 

and K=Ko+Ub.  In Eq.(32a), {Us} and ~ are 
the solutions of Eq. (31a) with and without the 
inclusion of Vgh, respectively. Eq.(32b) and 
Eq. (32c) are the results of momentum conservation 
parallel to the surface. 

4.3. The perpendicular-to-surface multi-slice theory 

In this multi-slice theory, the slices are cut 
perpendicular to the surface, and the theory offers 
a unique advantage for automatically including 
surface point vacancies and short-range ordering 
because the atomic arrangement in each slice can 
be chosen differently [15]. However, the unit cell 
truncated in the calculation is so large as to ensure 
the statistical average over different lattice config- 
urations. Recently, this theory has been applied 
to calculate the RHEED patterns of the 
Cu3Au(ll l )  surface, which shows short-range 
order due to the site substitution of Cu by Au 
[43], and a remarkable success has been 
demonstrated. 
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5. Calculation of the dynamic form factor S(Q,~) 

Based on the theory presented in Section 4, 
diffuse scattering due to both TDS and point 
vacancies can be calculated using the available 
theoretical approaches, provided the dynamic form 
factor S(Q,Q') is known. The calculation of this 
factor is the task for this section. 

5.1. Thermal diffuse scattering 

We first concentrate on the calculation of the 
dynamic form factor S for TDS. In a crystal, each 
atom is vibrating around its average equilibrium 
position. The instantaneous position of the tah 
atom in the crystal is r~, =r~ + U~(t), where U~ is 
the instantaneous displacement of the atom from 
its equilibrium position r~, and depends on time 
and the position of the atom, particularly in the 
case of surface atoms in RHEED. In TDS, we first 
do not consider the point vacancies introduced in 
crystal lattices, and thus the average of 
(A  V(rl,t)A V(r2,t)) t is on time only. This calculation 
can be conveniently performed if the crystal poten- 
tial is expressed as a Fourier transform of the 
scattering factors [28] 

A V(r l , t  ) = F(r  l , t)  --  Vo(r,,t) 

= ~ S dr exp[27ti(r, -r,,)z]~(~) 
K 

× {exp ( -  2rdU~ • T)-  e x p [ -  W~(¢)] }, (33) 

where T is a reciprocal space vector, f~(r) is the 
electron scattering factor of the tcth atom, and 
W~0r)=2n2(lT • U~I2), is the Debye-Waller factor. 
The sum of x is over all the atoms in the crystal 
and on the surface. Thus 

( A V(ra,t )A V*(r2,t ) ) ' 

= E E I d r I  du 
K K ~ 

x exp[ 27fi(rl - r~) • T] 

x exp [ - 2rd(r 2 - r,,,)" u]f;(T)[~,(u)]* 

x ({exp ( - 2 n i U ~ - T ) - e x p [ -  W~(z)] } 

x {exp (2niU~, • u ) -  e x p [ -  W~,(u)] } )t. (34) 

Comparing Eqs. (34) with (21), the dynamic form 
factor for TDS is 

S(Q,Q')= ~ ~ ~f:(ff)[f:,(Q')]* 
K K p 

× e x p [ -  2~iQ. r,~ + 2~ziQ' • r~,] 

x e x p [ -  I,V~(Q)- W~,(Q')] 

x {exp[2F~,(O,Q')] - 1}, (35a) 

where a correlation function is defined 

F,, , , , (Q,g)= 4rcZ ( (Q • U, , ) (g  . u,,,) ) t, (35b) 

which describes the correlation between atom 
vibrations. 

For the calculation here, the vibration of surface 
atoms is assumed to be described by the same 
lattice dynamics as for the atoms in a large bulk 
crystal. Based on the harmonic oscillators and 
adiabatic approximations, in which all the atoms 
are assumed to interact with harmonic forces and 
the crystal electrons move as though the ions were 
fixed in their instantaneous positions, one considers 
the phonon modes existing in a perfect crystal of 
infinite number of unit cells. The summation over 
~: can be separated into a summation over centers 
of unit cells R, and a summation over atoms within 
a cell, the equilibrium position of the ~th atom 
relative to the nth unit cell is r , ,=R,+r(oO,  and 
time-dependent displacement vector of the Kth 
atom is given in normal coordinates as [44] 

h 1/2 1 
U,,- ~ ~, 

(2NoM~) 09j(q) 1/2 q J 
1/2 

× e(~J~) exp[2niq-r~][a+(])+a(])], (36) 

where q, coj(q) and e are the phonon momentum, 
frequency and polarization vectors, respectively, 
No is the total number of primitive unit cells in 
the crystal, M~ is the mass of the Kth atom, j 
indicates phonon branches, and a+(-qj) and a(qj) 
are defined as the creation and annihilation opera- 
tors of a phonon with wave vector q and frequency 

(Dj. 

In RHEED, anisotropic vibration of surface 
atoms might be important because of the broken 
bonding at the surface. It has been shown that the 
contribution made by surface phonons is compara- 
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ble to that made by the phonons in the bulk [45].  
To introduce this effect in the calculation, the 
phonon dispersion ~oj(q) and the polarization 
vector e(~l~) are modified in such a way that they 
are assumed to depend not only on the position 
of the atom (at the surface or in the bulk) but also 
on the vibration direction; thus oJj(q) is replaced 
by ogj(s~,q), where coj(s~,q) = ~oj(q) if the atom is in 
the bulk and it can be different if the atom is at 
the surface, e(~l~) is separated into components 
parallel (et) and perpendicular (ex) to the surface 

e@}) = e,0cl~) + e~(~cl~)£. (37) 

In the high-temperature limiting case 

FK~,(Q,~) ,,~ 27~2£2 

kaT 
x j" dq Z M 1/2 BZ j o~j(s,,,q)coj(s~,,q)(M~ ~,) 

x [Q'e(xl~)][~'e(~:'l]q)] 

x exp[2rdq • (r, - r,,)], (38) 

where £2 is the volume of the unit cell, and the 
integration of q is restricted to the first Brillioun 
zone (BZ). The orientation average of [Q" e][Q' "e] 
is evaluated by assuming that the vibration dis- 
placements in the y-z  plane (parallel to the surface) 
and in the x-axis direction (perpendicular to the 
surface) are different, one has approximately 

, + ' +  , QxQ':d3s a f a r  QzQ~ 
[Q'e(~cl~)][Q"e(x'lJ)]. ~ 3 

(39) 

where fl~ is the ratio between the mean square 
atom vibration amplitudes perpendicular to and 
parallel to the surface, fls = 1 if the atom is located 
in the bulk. Thus 

! . 4 _  ¢ v QxQxfls QrQr + QzQ, 
F~,,,(Q,Q') ~ 3 £2 

2~Z2 kB T 
x ~dq~ ,  

uz j °~j(s~,q)r-°j(sK,,q)(M~M~,) 1/2 

x exp[2~iq • (r,, - r,,)]. (40) 

To simplify Eq. (40), the Warren approximation is 
introduced [46]. We assume that all vibration 
waves can be considered as either purely longitudi- 
nal or purely transverse. The velocities of all longi- 

tudinal waves are replaced by an average 
longitudinal velocity, and the velocities of all 
transverse waves by an average transverse velocity. 
Each average velocity is considered to be a con- 
stant independent of the phonon-wave vector q. 
To perform the integral over q in Eq. (37), the 
Brillioun zone is replaced by a sphere of radius 
qm, whose volume is equal to that of the Brillioun 

4 
zone ~ ~Zq3m = VBz = 1/£2. For a cubic crystal with 

lattice constant a, qm = 31/3( 4n)- 1/3a- 1. The density 
of points (or states) in the sphere is No/VBz, and 
the summation of q is replaced by an integration 
throughout the sphere. For each type of wave, 
longitudinal or transverse, the polarization vector 
e takes with equal probability at all orientations 
relative to 3, and for all waves whose vector q 
terminate in the hollow sphere, we can use the 
average ( [Q .  e] [Q'. e l )  = Q'  Q'/3. Defining 
09jm = 2nVjqm for the acoustic branches, which are 
assumed to be dominant modes for atom displace- 
ments, where vj is the velocity of the phonon, one 
has 

3k8 T(QxQ" fls + QrQ'r + Q~O'z) 
F~, (Q,~) ,~  2q2(MKM~,)I/2 

1 Si(O~,) 
x[ Z - - ]  - -  

j Vjrl)jrt Orr t  

Mix~ 2 
= 2 = 2 ~  ]~I/2 (QxQxt f l s  

" ~  t e l  

! ! 
+ Q,Q, + QzQz) 

x j Si(OKK,) (41) 

Z 2 e.K, ' 
J 

where the phonon velocity vj~ = vj if the atom is in 
the bulk, it might be different otherwise 

O sin u 
Si(O)= ~ du - - ,  (42) 

o U 

with O~, = 2~qmlr~--r~,l. Si(O) is a function which 
describes the vibration correlation between atoms 
and characterizes the coherent property of the 
diffuse scattering waves generated within a local 
region [47].  Si(OK~,)/O~, drops quickly with 



388 Z.L. Wang~Surface Science 366 (1996) 377-393 

increasing interatomic distance (see Fig. 4). By 
assuming a 10% cut-off, 2rcqmlr~--r~,lmax "~ 10. For 
a = 0 . 4 n m ,  the coherent length is Ir~-r~,lmax,-~l 
nm, about 4-5 interatomic distances. If two atoms 

are separated by more than 1 nm, the TDS waves 
generated from the two atom sites are incoherent. 
This is the result from the Debye model rather 
than the Einstein model assumed in some of the 
published papers. 

5.2. Diffuse scattering produced by a growing 
surface 

A growing surface can be considered to have a 
surface coverage Zo. in the top growing layer, some 

of the lattices are filled with atoms and the remain- 
ing ones are vacant. The sites filled with atoms can 
be aggregated to form surface islands, surface steps 
or random points, depending on the growth tem- 
perature. The following treatment is designed for 
a general case, and the distribution of point vacan- 
cies varies from cell to cell. Therefore, a structural 
average on different cell configurations must be 
made to statistically average over the randomness 
and ordering of point vacancies produced by sur- 
face roughness. For simplicity, we consider a case 
in which the crystal structure is dominated by a 
periodic lattice, but with some point vacancies. 
The point vacancies can be attributed to the sites 
that have not been filled by atoms at the surface, 
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Fig. 4. Plots of the function Si(O)/O. 
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as schematically shown in figure 8. This is a typical 
case in MBE growth. Thus, the crystal potential is 
written as 

V(r,t) = ~ ~ dT exp[2ni(r- -r~--  U,,).T]a~(x)f~(~), 
K 

(43) 

with a~(x)= 1 if the site is occupied and a~(x)= 0 
if the site is vacant [37]. The operator a~(x) is x 
dependent in order to take into account the depen- 
dence of vacancy distribution as a function of 
depth into the surface. The structure average is to 
effectively reduce the scattering power of each 
atom, and then 

Vo(r)=Zo(X) Z I d~ 
K 

x exp[2ni(r--v,~).T]f~(T) exp[-- W~(~)], (44) 

Zo(X)=(a~(x))~= 1--Z,(x), where X,(x) is a depth- 
dependent probability function of a site to be 
vacant. Zo(X) can be understood as the depth- 
dependent coverage of each growing layer in MBE. 
TDS always accompanies electron scattering and 
it cannot be separated from the diffuse scattering 
caused by point vacancies. Thus, for a non-perfect 
crystal TDS must also be considered. Hence 

< A V(r~,t)A V*(r2,t))t~ 

= 2 2 l d z l  du 
K Kt 

x exp[ 2hi(r1 -- r~)" z] 

x exp [ -- 2ni(r 2 -- r~,)" u]/~(~)EfL(u)]* 

x exp[-- l,V~(z)- l'V~,(u)]{(a~(xOa~,(x2))~ 

exp[ 4n2 <(U,, • ~)(U,,,. u))t] - Zo(XO)~o(X2)}. (45) 

The statistical structure average of 
<a~(xl)a~,(x2))s is performed as follows. Using the 
Flinn sign [48] 

6a~ = a~ - Zo = Zv - a~, (46) 

where a ~  is a vacancy operator with av~ = 0 if the 
site is occupied, and av. = 1 if the site is vacant. 

<O'l¢(Xl)O'tct (X2)>s = < ]-(~O'rc(Xl)60"tct(X2)] >s 

"~-)~0(X1))(o(X2). (47) 

This quantity is correlated to Cowley's SRO 

parameter defined by [50] 

c~, - , (48) 
ZOZv 

with ~ = 1. Substituting Eqs. (47) and (48) into 
(45), and comparing with Eq. (21), the dynamic 
form factor is 

S(Q,Q')= ~ ~ exp[2n i ( r , , ' f f - r~ .Q) ]  
t¢ g~ 

x f~ (Q)[ f~ , (~ ) ]*  e x p [ -  W~(Q)-  w~,(Q')] 

x {ZOZv~,. exp[2F~,(Q,Q')] 

+ Zo(X0Xo(X2) {exp[2F~,(Q,Q')] - 1} l.(49) 
) 

In { }, the first term is the diffuse scattering due 
to point vacancies, and the second term is due to 
TDS. If the atomic vibration is described by the 
Einstein model and there is no correlation in the 
distribution of the point defects, Eq. (49) gives the 
result of Dudarev et al. [491 

To show the physical meaning of the SRO 
parameters, we now examine the relationship 
between <ra~a~ , )  and the correlation probability. 
From Eq.(46), the probability of finding an 
vacancy at a given distance r~, from a vacancy at 
site s: is 

e ~ ,  = <~:~v ,>  

= < ( Z v , - r a ~ ) ( z v - 6 % ) > ,  

= z~ + < ~ , > s  = z~ + ZoZv~ . . . .  (50)  

where the first term X2v represents the probability 
of two vacancies being distributed at x and x' if 
there is no correlation (i.e. random distribution). 
Each vacancy site is a point defect. The values of 
(ra, , fa, , , )s  specify the degree to which the neigh- 
bors of one vacancy tend to be preferably of the 
same type of vacancy. If ~ ,  is positive, 
pv,,,,,,, >ZZv, the vacancies tend to clump together 
with vacancies. If a,~, is negative, P**~,, < Z2v, the 
vacancies tend to clump together with atoms. 
Therefore, the measurement of e~, can reflect the 
short-range ordering in the considered system. The 
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decrease of ~K~, with the increase of r~, gives the 
range of ordering. 

Point vacancies can cause lattice relaxation in 
the crystal. If there is no correlation between 
vacancies, the relaxation effect can be taken into 
account by introducing a similar quantity to the 
Debye-Waller factor that depends on the average 
displacement of an atom as a result of lattice 
relaxation [51]. Although lattice relaxation was 
not considered in the above derivation, it can easily 
be included in the calculation by substituting the 
Debye-Waller factor W~(Q) by [W~(Q)+ W~)(Q)], 
where w~d)(Q)=2n2Q2(o2), and (0 2) is the mean 
square displacement produced by lattice relaxation. 

In RHEED, formation of island on the surface 
is an important phenomenon in MBE growth. The 
calculation of the dynamic form factor for this case 
has been considered by Beeby [31]. The theory 
given in this section has also been applied to 
calculate the dynamic form factor in a binary alloy 
system, such as  C u 3 A u  , due to site substitution. 
Details are reported separately [52,53]. 

Finally, it is necessary to point out the differences 
between this theory and the theory presented by 
Dudarev et al. [42,49]. The contribution of diffuse 
scattering on the dynamical diffraction intensities 
is two-fold: how random fluctuations in the atomic 
arrangement influence the wave function describing 
elastic Bragg scattering, and what the angular 
distribution of diffusely scattered electron is. The 
calculation in Ref. [42] is concentrated on the first 
question, while the current theory is concentrated 
on both questions. The current theory has three 
advantages in comparison to that in Ref. [49]. 
First, in this theory, the multiple diffuse scattering 
terms are automatically included, although the 
calculation is performed using the first-order 
diffuse scattering equation. In ref. [49], however, 
it is necessary to solve the integral density matrix 
equation (Eq. (15) in Ref. [49]) iteratively in order 
to include the high-order diffuse scattering terms. 
This can be a process involving a lot of computa- 
tions. Second, although the theory in Ref. [49] 
was presented in a general form, the numerical 
calculation was performed based on the DWBA 
(Eq. (40) in Ref. [49]). Thus, the result is accurate 
if the surface distortion is small. In contrast, the 
theory here is a general approach which is expected 

to be applicable to any rough surfaces. It is known 
that DWBA is a poor approximation for dealing 
with point defects, because the distorted potential 
has almost the magnitude of the atomic potential 
(see Fig. 1) although the surface coverage could be 
small. Finally, the dynamic form factor is calcu- 
lated using the Debye model with consideration of 
the spatial correlation between vacancy distribu- 
tion, while the calculation in Ref. [49] is based on 
the Einstein model and random distribution of 
surface atoms. The atom distribution due to the 
formation of surface island or steps, in principle, 
can be properly included in the theory here. 

6. Conclusions 

In this paper, a formal dynamical theory of 
RHEED has been developed to calculate the diffuse 
scattering produced by both atom vibrations and 
point vacancies at surfaces. The theory is aimed at 
recovering the multiple diffuse scattering that has 
been dropped by the distorted-wave Born approxi- 
mation (DWBA). With inclusion of a complex 
potential in the dynamical calculation, a rigorous 
proof is given to show that the high-order diffuse 
scattering terms are recovered in the calculation 
using the equation originally derived under the 
DWBA. This conclusion establishes the basis for 
expanding the RHEED theories developed under 
the first-order diffuse scattering to cases where the 
degree of surface roughness is high, allowing 
dynamical calculations of RHEED rocking curves 
for any growing surfaces. The time and structure 
averages over the distorted crystal potential are 
performed analytically before the numerical calcu- 
lation. The theory is given in the Bloch wave and 
multi-slice forms best suited to numerical calcula- 
tions. The dynamic form factor is calculated with 
consideration of anisotropic surface-atom vibra- 
tion and point vacancies at a growing surface. The 
coherent effect in thermal diffuse scattering intro- 
duced by the phase correlation among atom 
vibrations has been included. It is believed that 
this general theory will have a profound impact 
on the implications of existing RHEED theories. 
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Appendix A 

We now derive the form of V, which using 
Eq. (6) would be the exact solution of Eq. (2). By 
rewriting Eq. (7) into the form 

( -  h~ v 2 - e ' V ° - E )  (A1) 

substituting Eqs. (6) into (2) and using Eq. (4) 

( - -  2moh~ V2_eTVo_eyAV_E) g t 

=(-2h~moV2-eTVo-E)~-e~AVtI t 

= e7 [V' 7Jo] + eTA I/W o - eTA V{ gJo(Ko,r) 

+ I drl G(r,r,)[e?A V(r,,t) ~o(rl,t)]} 

= e? [V' 7to] - e?A V~ dr1 G(r, rO[eTA V(rl,t) ~UO(rl,t)] 

=0. (A2) 

thus 

[V' ~o] = ~ dr, G(r,r,)[e?A V(r,t)A V(r,,t)] ~rCo(rl,t)]. 
(A3) 

This is just Eq. (8). 

Appendix B 

From Eqs. (17) and (22), the diffraction intensity 
is calculated based on following equations 

~'(r,t) = < ~o(Xo,r)> 

+ ~ dr 1 G(r, rl)[eyA V(rl,t)< ~o(rl,t)>], (B 1) 

/to< gto) = ey[V'< ~o>], (B2) 

where 

IV'< gto> ] = ev ~ dr I [G(r,r,) 
x <AV(r,t)AV(rl,t)><~to(Ko,r,)>], (B3) 

/4o G(r, r j  = 6(r-rl), (B4) 

and 

/~o=(  - ~ m  oh2 V2-eyVo-E).  (BS) 

Although some approximations were introduced 
in deriving Eq. (17), we now prove that the calcula- 
tion based on Eqs. (B1), (B2), (B3), (B4) and (B5) 
(or equivalently Eqs. (17) and (22)) indeed covers 
exactly all orders of diffuse scattering. The current 
density defined in quantum mechanics is used for 
this proof. With consideration of diffuse scattering 
generated by different crystal configurations, a time 
and structure average is made on the current 
density 

h (~ dS' jo>= - -  I dr<[ gt*V2gt- ~/fl72~*]>, 
z 2imo~ vol 

(B6) 
where the integral ~2 is over the crystal surface 
and the integral vol is over the crystal volume. 
From Eq. (18a) 

Ho~(r,t)=ey[V'<~o>] + e~A V< ~o>, 

the following calculations can be made 

h 2 

2mo 

(B7) 

_ _ _  < E ~ , V ~ _  ~,v~7,*]> 

= < ~*/-/o q ' -  ~/-/o ~*  > = <{< ~o*> 

+ ~ dr1 ~*(r, rl)Ee~,A V(r,,t)< ~o*(rl,t)>]} 

x {eyEV'( 7to>] +e7AV(~o>})-<{(~o> 

-t- I drl G(r, rl)[~2z] V(r 1,t)< ~rJo(r 1,t)>l} 

× {evEv'<~o>]*+e~,zlv(~¢o*>}> 

= ey< ~o*>[V'< ~o>] + (e?)2< ~o> ~ dr, 
x G*(r,r,)<B V(r,t)A V(r,,t)>< ~o*(r,,t)> 

-eT< ~o>[V'( ~o>]*-  (e7)2( ~o*>~ dr, 

X G (r, rl)<A V(r,t)A V(r, t)> < ~Uo(r,,t)> = 0, 

(B8) 

i.e., <~ dS'j0>=0. Therefore, the total incident 

intensity equals the total out coming intensity, 
which means that the multiple diffuse scattering 
are automatically included in the calculation using 
Eqs. (17) and (22). Since no assumption was made 
in the scattering geometry of the crystal system, 
this conclusion is universal and is not restricted to 
high-energy electrons. 
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A p p e n d i x  C 

The Green's function represents the electron 
wave distributed in the space due to a point source 
located at r=r '  in the crystal. In this section, we 
use the Green's function given by Dudarev et al. 
[49] to calculate the optical potential for a general 
case. The Green's function for electron scattering 
has been proved to be in the form of 

G(r, rO = mo 
2rc2h2 lim 

e ~ o  

exp ( -  2nix. r 0 
x ~dx 

(to2- K 2 - i e )  
~°~(x,r). (C 1 ) 

Case 1: The bloch wave approach 
Take a double Fourier transform of G(r,r') 

G(u,v) = mo ~to°)(-v,u) 
2rc2h2 lim ( v 2 _ K 2 _ i e ) ,  (C2) 

e ~ o  

where ~°)o(~C,u ) is the Fourier transform of ~°)  o 
(x,r), and the negative sign of the wave vector 
indicates that the incident plane wave strikes the 
crystal from the bottom surface. Substituting this 
equation into Eq. (25), the optical potential in the 
Bloch wave representation is 

V,(i) eymo 
.h -- 2.2h2V~ Z ~ [J" d~(tc) aj(~)C'~)(~c) 

j gt 

S(k, + g -  ~ -  D ~ -  g',k~ + h -  ~ ) 
x 

tc 2 _ K 2 

+i ~ o  S d<~) ~j(~)C'~(~) 

x S ( k ~ + g - x - D ~ - g ' , k i + h - x ) ]  , (C3) 

where the integral T(x) is over all reciprocal space 
except a spherical shell defined by [xl =K0, the 
integral a(x) is over the Ewald sphere surface 
defined by K = Ko, ki = K +  vi~, and C~°,')(tc) are the 
Bloch wave coefficients of Eq. (24) without con- 
sideration of the optical potential V. The integral 
of u is to sum over the components scattered to 
the entire reciprocal space. Since 1/(~: 2 -  K2o) is an 

antisymmetric function when x ~ ( K o - e )  and 
tc~(Ko + e), and thus the integral around the singu- 
lar point x = K  o is approximately zero. Thus, no 
abnormal numerical singularity is expected in the 
numerical calculation. 

Case 2: The parallel-to-surface multi-slice approach 
From Eq. (29), the solution of Eq. (10) is in the 

form 

~m(~:,r) = ~ ~°)(K,x) exp[2rd(~c t + ~ ) ' p ] .  (C4) 
g, 

Substituting Eqs. (C1) and (C4) into Eq. (31c), and 
performing the integrals, we obtain 

ey mo ~ lim S dQ~ 
V'gh(X)-- Sc 2rc2h 2 e~ ° 

x SOu 
S(Qx ,Kt  +gt - -Ut  - -g t t ,K t  + h, - - u )  

(u 2 -- K 2 -- ie) 

× ~°~(u,~) 

e7 mo 
- -  S~ 2~2h 2 ~ S dQ~ [S dT(u) 

gt 

S ( Q x ,Kt '~ g t - ut - g t t,Kt ~- ht - u ) 
x (u 2 __K2) ~°)(u,x) 

7~ 
+i  ~ 0  S da(u)S(Qx ,Kt+gt -u t -g t ' ,K t+ht  - u )  

× '/~°~(~,x)]. (c5)  

If the Green's function is replaced by its form in 
free space 

2mo exp (2n iKolr - r l l )  
G°(r'rl)= h 2 4z@-rd  

mo exp[21rix • r - -  r l )  ] 
- l i m  ~ d~¢ (K 2 - K 2 - i e )  27r2h2 e~ o 

(C6) 

the optical potential is calculated as follows: 

V'gh(X)= ey mo 
Sc 2n2h 2 S dQx 

S(g, +gt -U.Ox,lfi +h,-u)  
x IS de(u) (u 2 _ Ko2) 
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7~ 
x exp  (2rf iUxX)+i ~ S do'(u) 

x S ( K  t -]-gt - u t ,Qx ,Kt  -k- h t - u) (C7)  

x exp (2rfiuxx)]. 

Detailed calculation of Eq. (C5) has been given 
elsewhere [54]. 
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