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Abstract
Electron-energy-loss spectroscopy (EELS) in a high-resolution transmission

electron microscope can be used to study the excitation of plasmons in
nanometre-size particles with high spatial resolution. For isotropic particles of
various shapes, models which allow the attribution of the experimental peaks to a
certain excitation mechanism and to understand size- or geometry-dependent
variations are well established. Recently, locally anisotropic particles such as
nested concentric-shell fullerenes and carbon nanotubes have been discovered
and have attracted considerable interest. The plasmon losses of these
anisotropic particles measured by EELS could contribute to a better
understanding of their physical properties, once the theoretical basis for the
interpretation is adapted for anisotropic particles. Encouraged by very good
qualitative agreement between a model of the plasmons of nested concentric-
shell fullerenes based on non-relativistic local dielectric response theory with
experimental data, we present here a model for the plasmon excitations of
multiwall carbon nanotubes based on the same theoretical approach.

} 1. Introduction
Multiwall carbon nanostructures consist of several graphene sheets rolled up into

cylinders (Iijima 1991, Ebbesen and Ajayan 1992) or spheres (Ugarte 1992) (® gure 1)
which are arranged coaxially or concentrically and belong to what are commonly
called carbon nanostructures. C60 fullerenes were the ® rst of these structures to be
discovered (Kroto et al. 1985). When it became possible to produce them in macro-
scopic quantities and in crystalline form (KraÈ tscher et al. 1990), it was found that
they had remarkable physical properties. Unlike crystalline graphite which is semi-
metallic, or diamond which is insulating, the C60 crystals were semiconducting with a
well de® ned gap.

When multiwall graphitic tubular structures were discovered (Iijima 1991,
Ebbesen and Ajayan 1992) the question about their properties was immediate. At
® rst, simulations of the electronic properties of single-wall tubular structures (single-
wall carbon nanotubes) suggested that the electronic properties should strongly
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depend on the diameter and on the helicity of the tubes (Hamada et al. 1992,
Mintmire et al. 1992, Saito et al. 1992). However, the experimental determination
of the properties of the di� erent nanostructures and the comparison with the simu-
lations turned out to be a di� cult task. Even though important progress has been
made, the present production (Ebbesen and Ajayan 1992, Journet et al. 1997, Thess
et al. 1996) and puri® cation methods (Bonard et al. 1997b, Dujardin et al. 1998) still
yield a mixture of di� erent particles. In bulk measurements the di� erence between
the di� erent constituents of the mixture is washed out and the mean response
obtained from such experiments is not suitable for a direct comparison with simula-
tions.

Recently local probe techniques such as ® eld emission microscopy (FEM) (de
Heer et al. 1995, Bonard et al. 1997a), scanning tunnelling microscopy (STM)
(Carroll et al. 1997, Tans et al. 1997, Bachtold et al. 1998, Bezryadin et al. 1998,
Frank et al. 1998), and atomic force microscopy (AFM) (Salvetat et al. 1999) have
given some insight into the intriguing properties of those novel carbon-based mate-
rials. Using FEM it was possible to show that the tips of nanotubes are characterized
by well localized electron states from which the ® eld emission takes place preferen-
tially (de Heer et al. 1995, Bonard et al. 1997a). STM measurements allowed for the
® rst time a direct comparison of the electronic properties of single-wall carbon
nanotubes with the calculated density of states (DOS) (Carrol et al. 1997, Tans et
al. 1997). Another experimental set-up using STM principally for high-resolution
characterization allowed multiprobe transport measurements to be carried out on
single-wall carbon nanotubes (Bachtold et al. 1998, Bezryadin et al. 1998). Also

1532 T. StoÈ ckli et al.

Figure 1. Multiwall carbon nanostructures exist in di� erent geometries: (a) multiwall carbon
nanotubes, (b) nested concentric-shell fullerenes; and (c) multiwall polyhedal particles.
High-resolution transmission electron micrographs and a schematic of the structure of
each type are shown.



using the set-up of STM, the conductivity of multiwall carbon nanotubes has been
determined. It appears to be quantized, hinting that the transport in these structures
may be ballistic even at room temperature (Frank et al. 1998). Finally, AFM
measurements revealed that both single-wall and multiwall tubular structures are
extremely sti� (Salvetat et al. 1999).

Another technique giving complementary information about the electronic prop-
erties of nanometre-size particles is electron-energy-loss spectroscopy (EELS) in a
high-resolution transmission electron microscope. Di� erent experimental studies
using this technique have been carried out on carbon nanostuctures (Ajayan et al.
1992, Bursill et al. 1992, Kuzuo et al. 1992, SteÂ phan et al. 1996, Yase et al. 1996,
StoÈ ckli et al. 1997a). For the plasmon region, however no detailed interpretation of
the experimental data is available. The reason for this is that, even though much
theoretical work on carbon nanostructures has already been done, the excitation of
plasmons by high-energy electrons has not been addressed in detail except in a recent
publication where we have given the basis for the interpretation of electron-energy-
loss spectra of nested concentric-shell fullerenes (StoÈ ckli et al. 1998a) . Using the same
approach, based on non-relativistic local dielectric response theory (for a review, see
Wang (1996)), we present here the theoretical basis for the interpretation of EELS
experiments on multiwall carbon nanotubes, taking into account their particular
anisotropy.

Non-relativistic local dielectric response theory has been used with success for
the interpretation on isotropic nanometre-size particles of di� erent geometries such
as thin slabs (Ritchie 1957), spheres (Ferrel and Echenique 1985, Bausells et al. 1987,
Echenique et al. 1987, Ferrell et al. 1987), layered spheres (Ferrell et al. 1987, Ugarte
et al. 1992, StoÈ ckli et al. 1997b), spheres halfway embedded in a supporting medium
(Wang and Cowley 1987, Zabala and Rivacoba 1991), and cylindrical channels (Chu
et al. 1984, Zabala et al. 1989, Walsh 1991, Rivacoba et al. 1995). Since a preliminary
comparison of experimental data with the simulations of the anisotropic spheres
(nested concentric-shell fullerenes) shows excellent qualitative agreement between
theory and measurement (StoÈ ckli et al. 1998b), we are con® dent that the following
results will give a valuable basis for the interpretation of the electron-energy-loss
spectra of multiwall carbon nanotubes for penetrating and non-penetrating
electrons.

} 2. Non-relativistic local dielectric responsetheory of small particles

2.1. General considerations
The basic idea of non-relativistic local dielectric response theory is to calculate

the energy loss of one single probe electron{ by integration of the elementary work
¯W ˆ F…x; t†·dx done by the electric ® eld acting on the electron along its trajectory:

E ˆ ¡

…

trajectory
¯W ˆ

e

2p

…

trajectory

… 1

¡ 1
exp …¡ i! t† E…x; !† d! ·dx: …1†
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{ In a transmission electron microscope an electron flux of about 1012 electrons s¡ 1 passes
through the sample. However, the electrons have a rather high kinetic energy (typically
100 keV and more) and their speed is of the order of half the speed of light. As a consequence,
the distance between successive electrons is large enough that the interaction between them can
be neglected.



It is assumed that the electron is travelling on a straight line and at constant velocity
v{ so that the evaluation of the path integral is possible.

The electric ® eld needed for the evaluation of the energy loss E is determined
using the Maxwell equations. Within this formalism, the medium through which the
electron is travelling is characterized by its frequency-dependent complex dielectric
tensor{ . This requires the resolution of the Maxwell equations in frequency space so
that the electric ® eld is obtained as frequency-dependent function. However, for the
determination of the energy which the electron loses when passing through the
sample (equation (1)) the time-dependent electric ® eld needs to be known. In equa-
tion (1) the electric ® eld is therefore written as the Fourier transform of the fre-
quency-dependent dielectric response as obtained from the resolution of the Maxwell
equations into time space. For the Fourier transform, the following convention has
been adapted:

A…r; !† ˆ

… 1

¡ 1
exp …i!t† A…r; t† dt …2 a†

is the direct Fourier transform from time space into frequency space, and

A…r; t† ˆ
1
2p

… 1

¡ 1
exp …¡ i!t† A…r; !† d! …2 b†

is the inverse transform from frequency into time space.
It has to be noted that the energy lost by the electron upon interaction with the

sample can also be expressed in terms of the plasmon excitation probability
dP …!†=d! :

E ˆ

… 1

0
!

dP …!†
d!

d!: …3†

Eliminating E in equations (1) and (3) the probability dP …!†=d! for an electron to
lose the amount of energy ! can be calculated. This quantity is of considerable
interest since it can be compared directly with experimental data.

For the determination of the energy loss (equation (1)) an additional simpli® ca-
tion of the original problem is introduced; it is assumed that the probe electron
instantaneously reacts with the ® eld which it induces}. For particles with isotropic
electronic properties, the Maxwell equations in this case lead to the Poisson equation

r
2
V …r; !† ˆ ¡

1
"0"…!†

»…r; !†: …4 a†

For the case when the particle has anisotropic dielectric properties the equation
which determines the potential is given by
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{ The energy loss of the probe electrons in the plasmon region is below 40 eV. Compared
with the primary energy of more than 100 keV, this energy is negligible. Scattering angles of
electrons exciting plasmons in the sample are smaller than about 50 mrad. In consequence, the
trajectory of the probe electrons is in good approximation a straight line.

{ It can be realized that the wave-vector dependence of the dielectric response of the
medium is excluded (local response). Even with this simplification, the model has proved
successful in explaining the plasmon losses of small particles of various geometries.

} It is assumed that the terms in …v=c†2 are small compared with the other terms in the
Maxwell equations (non-relativistic theory). This means that retardation effects and CÏ erenkov
radiation are neglected.



Ñ · "0~"…!† Ñ V …r; !†‰ Š ˆ ¡ »…r; !†: …4 b†

»…r; !† is the Fourier transform of the point charge located at position r and, for the
geometry shown in ® gure 2, is given by

»…r; !† ˆ
¡ e

v
¯…x ¡ x 0†¯…z† exp

i!y

v
: …5†

From the viewpoint of classical electrodynamics, the probe electron can interact in
two ways with nanometre-size particles. On the one hand it can polarize the medium
in which it travels. This polarization requires energy and the corresponding energy
loss of the probe electrons can be observed in the electron-energy-loss spectra. The
losses due to this excitation mechanism are called volume plasmons. The position of
the maxima of the volume plasmon excitation (resonance) are determined by the
zeros of the real part of the dielectric function. On the other hand the probe electron
can induce surface charges. They enter in resonance at a frequency which is deter-
mined by the position of the volume plasmon resonance and the geometry of the
particle. The losses due to this excitation mechanism are called surface plasmons and
can only be observed when the particles are small enough.

2.2. Surface plasmon excitation
Basically, equations (1) and (3) allow the total plasmon excitation probability to

be determined using the solution of equations (4 a) and (4 b). However, it is con-
venient to treat the surface and volume plasmon excitations separately. For this
purpose it can be noted that the general solution of equations (4a) and (4 b) is the
sum of the homogeneous and the particular solution of the problem. The two terms
represent the induced potential (surface plasmon) and the direct potential (volume
plasmon) respectively:

V …r; !† ˆ V
ind…r; !† ‡ V

p…r; !†: …6†

Since the induced potential responsible for the surface losses can be calculated
separately, it is useful to introduce the notion of surface plasmon excitation prob-
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Figure 2. Geometrical de® nitions for the carbon nanotube geometry. The electron, located at
position r0, is travelling at constant velocity at an impact-parameter x0 from the origin
in negative y-direction. In cylindrical coordinates, its position is given by the para-
meters r0, ’0 and z0.



ability dP
surf …!†=d!: Starting from equations (1) and (3) it can be shown that the

surface excitation probability for the geometry shown in ® gure 2 is given by the
following expression (Wang 1996){ ;

dP
surf …!†
d!

ˆ
e

p v2

… 1

¡ 1
dy

0

… 1

¡ 1
dy Im exp

i!…y
0

¡ y†
v

V
ind…r; r0† r0ˆ …x 0;y

0
;0†

rˆ …x0 ;y;0†

#

:

"

…7†

It is important to note that the time dependence of the problem has been eliminated.
V

ind…r; r0† is the induced potential at position r caused by a stationary electron
located at position r0. It is the homogeneous part of the solution of

r
2
V …r; r0† ˆ

e

"0"…!†
¯…r ¡ r0† …8†

if the electron is travelling in an isotropic medium and of

Ñ · ~"…!† Ñ V …r; r0†‰ Š ˆ
e

"0
¯…r ¡ r0† …9†

if it is in an anisotropic medium. The potential distribution therefore is quasi-elec-
trostatic and frequency dependent for each point along the trajectory of the incident
electron. The integral over y is the sum over the contributions of all the points along
the trajectory.

2.3. V olume plasmon excitation
The volume plasmon excitation in a uniaxial crystal such as graphite has

been treated theoretically by di� erent workers (Hubbard 1955a,b, Tosatti 1969,
Wessjohann 1974, Daniels et al. 1979). Probably the most detailed calculations
have been published by Wessjohann (1974). For a uniaxial crystal with its c axis
inclined by an angle ¬ with respect to the optical axes of the microscope (® gure 3) the
volume plasmon excitation probability per unit path length is given by

d2
P

volume…!†
d! dy

ˆ
e

2

4p3v2"0

… ³c

0
³ d³

… 2p

0
d’ Im

¡ q
2
0

q2
p"? …!† ‡ q2

c"k …!†… † …10†

qc and qp are the projection of the transferred momentum q on to the coordinate
system in which the dielectric tensor is diagonal, that is on the unit vector parallel to
the c axis of graphite and on to the plane perpendicular to the c axis respectively
(® gure 3). The two projections can be expressed in terms of the scattering angle ³, the
azimuthal angle ’ and the angle ¬ between the c axis of the crystal and the optical
axis (® gure 3):

q
2
p ˆ q

2
0‰…³E sin ¬ ¡ ³ cos ’ cos ¬†2 ‡ ³ sin ’†… 2Š …11 a†

q
2
c ˆ q

2
0‰³E cos ¬ ¡ ³ cos ’ sin ¬Š2; …11 b†

where ³E is given by

³E ˆ
!

2pvq0
: …12†
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{ Because in our case the electron is assumed to move in the opposite direction compared
with that in review by Wang (1996), the sign of the expression in the imaginary part needs to
be plus instead of minus.



The integration over the angles ³ and ’ takes into account all electrons scattered
within an angle smaller than the cut-o� angle ³c (Egerton 1996).

} 3. Modelling the dielectric properties ofa carbon nanotube
Multiwall carbon nanotubes consist of several graphene sheets rolled up to

cylinders of di� erent diameters, embedded coaxially into one another so that the
distance between the layers is approximately equal to the interlayer distance of
planar graphite (® gure 1). In contrast with nested concentric-shell fullerenes,
which are almost always completely ® lled (one can imagine the innermost shell to
be a C60 fullerene) , carbon nanotubes are hollow. This means not only that surface
plasmons exist on the outer surface but also that there are additional surface modes
on the inner surface and coupling modes between the surfaces. For mathematical
convenience, but also because the plasmons on the inner surface are screened by the
body of the nanotube, we don’ t take into account the inner hollow in the calculations
of the surface plasmon excitation probability{ (} 4). Since the volume plasmon con-
tribution is far more important than the surface contribution as long as the tube has
more than about ® ve layers, it will, however, be important to correct the volume
plasmon excitation probability for the inner hollow (} 5).
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Figure 3. Momentum transfer components for a probe electron passing through a uniaxial
crystal. The crystal’ s c axis is tilted by an angle ¬ with respect to the incident electron
beam. Before the scattering event, the electron has a momentum of q0. During the
scattering event, it transfers the quantity q to the crystal and leaves deviated by the
angle ³ with respect to its incident direction and by the azimuthal angle ’ .

{ The approach presented in this paper is also suitable for calculating the surface modes
on the inner surface. In fact it would be sufficient to include an additional boundary between
the tube and the inner hollow. The potential could then be calculated exactly in the same way
for the three different regions.



In order to model the dielectric response of a carbon nanotube we follow the
procedure of Lucas et al. (1994) which consists in projecting of the dielectric tensor
of planar graphite into cylindrical geometry (® gure 4). For planar graphite the
dielectric tensor has the form of a diagonal matrix with two di� erent components
along the natural crystallographic directions (® gure 4 (a)):

~e …!† ˆ "? …!†exx ‡ "? …!†eyy ‡ "k …!†ezz : …13†

"? …!† describes the dielectric response of graphite for an electric ® eld perpendicular
to the c axis and "k …!† is the response for an electric ® eld parallel to the c axis. From
purely geometrical considerations, the projection of the dielectric tensor of planar
graphite into cylindrical coordinates is given by

~e …!† ˆ "k …!†err ‡ "? …!†e’’ ‡ "? …!†ezz : …14†

} 4. Determinationof the surface excitation probability
The problem consists in ® nding the solution of equations (8) and (9) for the

geometry shown in ® gure 2. The carbon nanotube of in® nite length is located with
its symmetry axis on the z axis of a Cartesian coordinate system …x ; y; z†. The probe
electron, located at position r0, is parametrized in cylindrical coordinates r0, ’0 and
z0. Owing to symmetry, z0 can be chosen to be equal to zero. Since it is assumed that
the electron is moving on a straight line at an impact parameter x 0 from the optical
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Figure 4. Dielectic tensor for (a) planar graphite and (b) carbon nanotube model. The
dielectric tensor of graphite is projected into cylindrical coordinates.



axis of the microscope (y axis), r0 and ’0 can be expressed as functions of the impact
parameter and y: r0 ˆ …y

2 ‡ x
2
0†1=2 and cos ’0 ˆ x 0=r0.

For the determination of the potential, two cases need to be distinguished,
namely the electron located outside and inside the nanotube. The potentials for
the two cases are denoted as V

in…r; r0† and V
out…r; r0† respectively, where r is an

arbitrary position in space and r0 is the electron position (® gure 2).

4.1. Potential distribution for an electron outside the cylinder
The equations that determine the potential distribution for an electron travelling

outside the cylinder are

r
2
V

out
r>a …r; r0† ˆ ¡

1
"0

»…r; r0† f or r > a …15 a†

and

Ñ · ~"…!† Ñ V
out
r<a …r; r0† ˆ 0 for r < a : …15 b†

»…r; r0† ˆ ¡ e¯…r ¡ r0† represents an electron located at r0 and a is the radius of the
cylinder (see ® gure 2).

As discussed in } 2.2, the solution of equation (15 a) is written as the sum of the
solution of the homogeneous problem, V

out ind
r>a …r; r0† and the solution of the inho-

mogeneous problem, V
out p
r>a …r; r0†.

V
out
r>a …r; r0† ˆ V

out ind
r>a …r; r0† ‡ V

out p
r>a …r; r0†: …16†

Equation (15 a) with the inhomogeneous term representing a point charge located at
r0 is frequently encountered in classical electrodynamics and its particular solution is

V
out p
r>a …r; r0† ˆ ¡

e

4p"0jr ¡ r0j
: …17†

For our problem, this solution is rewritten as a Fourier Bessel expansion (Jackson
1975):

V
out p
r>a …r; r0† ˆ ¡

e

2p"0

X

m 5 0

…2 ¡ ¯0;m†

cos‰m…’ ¡ ’0†Š
… 1

¡ 1

dq

2p
exp …iqz† L m…jqjr ; jqjr0†; …18 a†

where

L m…jqjr ; jqjr0† ˆ Km…jqjr†Im…jqjr0†³…r ¡ r0† ‡ Km…jqjr0†Im…jqjr†³…r0 ¡ r†: …18 b†

In equation (18 b), ³…x † is the Heaviside step function, de® ned as

³…x † ˆ
1 f or x > 0
0 for x < 0;

…19†

and Km …jqjr† and Im…jqjr† are the modi® ed Bessel functions (Bessel function of purely
imaginary argument (Watson 1996)) of order m and of argument jqjr .

The homogeneous solution of equation (15 a) is also written as a Fourier Bessel
expansion with coe� cients Am…q; !† that are determined by the boundary conditions:
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V
out ind
r>a …r; r0† ˆ ¡

e

2p"0

X

m 5 0

…2 ¡ ¯0;m †

cos ‰m…’ ¡ ’0†Š
… 1

¡ 1

dq

2p
Am…q; !† exp …iqz† Km…jqjr † …20†

The solution of the homogeneous equation (15 b) describing the potential in the
anisotropic medium can also be written in the form of a Fourier Bessel expansion
similar to equation (18 a). In fact, in cylindrical coordinates, the radial equation is
found to be

…kr†2 d
d…kr†2 V …kr† ‡ kr

d
d…kr†

V …kr† ¡ …kr †2 ‡ m
2 "? …!†

"k …!†… †V …kr† ˆ 0 …21†

where k ˆ q‰"? …!†="k …!†Š1=2. If the e� ective azimuthal quantum number ¸m …!†
de® ned by

¸m…!† ˆ m
"? …!†
"k …!†… †

1=2

…22†

is introduced, equation (21) becomes identical with the radial equation in the homo-
geneous case. The solution of the homogeneous equation in the anisotropic case can
therefore be obtained from the solution of the isotropic case (equation (20)) by
replacing the quantum number m in equation (20) by ¸m …!†, so that V

out ind
r<a …r; r0†

becomes

V
out ind
r<a …r; r0† ˆ ¡

e

2p"0

X

m 5 0

…2 ¡ ¯0;m †

cos ‰m…’ ¡ ’0†Š
… 1

¡ 1

dq

2p
Bm …q; !† exp …iqz† I¸m …!†

"? …!†
"k …!†… †

1=2

jqjr

2
4

3
5…23†

As in equation (20), the coe� cients Bm …q; !† are unknown and are determined by the
boundary conditions.

The boundary conditions, namely that the potential and that the normal com-
ponent of the displacement ® eld must be continuous,

V
out
r>a …r; r0†

rˆ a
ˆ V

out
r<a …r; r0†

rˆ a
…24 a†

and

dV
out
r>a …r; r0†

dr rˆ a

ˆ "k …!†
dV

out
r<a …r; r0†

dr rˆ a

; …24 b†

lead to the following expression for the coe� cients Am …q; !† and Bm…q; !†:

Am…q; !† ˆ
Km…jqjr0†

m…q; !†
I

0
m …jqja †I¸m …!†

"? …!†
"k …!†… †

1=2

jqja

2
4

3
5

8
<

:

¡ ‰"? …!†"k …!†Š1=2
Im …jqja †I

0

¸m …!†
"? …!†
"k …!†… †

1=2

jqja

2
4

3
5

9
=

;; …25 a†
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Bm …q; !† ˆ
Km …jqjr0†

m …q; !†
I

0
m…jqja†Km …jqja † ¡ I m…jqja †K

0
m …jqja †

¡
; …25 b†

where

m …q; !† ˆ ‰"? …!†"k …!†Š1=2
I

0

¸m …!†
"? …!†
"k …!†… †

1=2

jqja

2
4

3
5Km…jqja †

¡ I¸m …!†
"? …!†
"k …!†… †

1=2

jqja

2
4

3
5K

0

m…jqja†: …26†

As a general convention we use the prime to denote the derivative with respect to the
argument of the primed function.

4.2. Potential distribution for an electron inside the cylinder
The equations that govern the potential distribution when the electron is travel-

ling inside the cylinder are

r
2
V

in
r>a …r; r0† ˆ 0 for r > a …27 a†

and

Ñ ·‰~"…!† Ñ V
in
r<a …r; r0†Š ˆ ¡

1
"0

»…r; r0† f or r < a : …27 b†

The homogeneous solution of equations (27 a) and (27 b) can be written in terms of a
Fourier Bessel series with coe� cients C m…q; !† and D m…q; !† that are determined by
the boundary conditions:

V
in ind
r>a …r; r0† ˆ ¡

e

2p"0

X

m 5 0

…2 ¡ ¯0;m†

cos‰m…’ ¡ ’0†Š
… 1

¡ 1

dq

2p
C m …q; !† exp …iqz† Km …jqjr† …28†

and

V
in ind
r<a …r; r0† ˆ ¡

e

2p"0

X

m 5 0

…2 ¡ ¯0;m †

cos ‰m…’ ¡ ’0†Š
… 1

¡ 1

dq

2p
D m…q; !† exp …iqz† I¸m …!†

"? …!†
"k …!†… †

1=2

jqjr

2
4

3
5:

…29†

For the determination of the coe� cients C m…q; !† and D m …q; !† using the boundary
conditions (24 a) and (24 b) it would now be necessary to determine the potential
V

out p
r<a …r; r0† created by a point charge inside the nanotube. However, at this point, it

can be noted that for the determination of the surface plasmon excitation probability
(equation (7)) the direct potential does not need to be known explicitly. In fact, the
only reason for calculating V

in p
r<a …r; r0† resides in the necessity to determine the co-

e� cients C m…q; !† and D m…q; !† via the boundary conditions (24 a) and (24 b) on the
potential. However, these can be replaced by the equivalent boundary conditions on
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the electric ® eld, which in term can be calculated in straight forward manner (see
appendix A):

Ein
r<a …r; r0†·ez rˆ a

ˆ Ein
r>a …r; r0†·ez rˆ a

; …30 a†

Ein
r<a …r; r0†·e’ rˆ a

ˆ Ein
r>a …r; r0†·e’ rˆ a

; …30 b†

and

"k …!†…Ein
r<a …r; r0†·er † rˆ a

ˆ Ein
r>a …r; r0†·er rˆ a

: …30 c†

Ein
r0 a …r; r0†·ez , Ein

r0 a …r; r0†·e’ and Ein
r0 a …r; r0†·er are the components in cylindrical

coordinates of the electric ® eld inside and outside the particle respectively.
Equations (30 a) and (30 b) represent the continuity of the tangential component
of the electric ® eld and equation (30 c) the continuity of the normal component of
the displacement vector.

In terms of the electric ® eld, the solutions of equations (27 a) and (27 b) are

Ein
r>a …r; r0† ˆ ¡ Ñ V

in
r>a …r; r0† …31 a†

and

Ein
r<a …r; r0† ˆ ¡ Ñ V

in
r<a …r; r0†

ˆ ¡ Ñ V
in p
r<a …r; r0† ¡ Ñ V

in ind
r<a …r; r0†

ˆ Ein p
r<a …r; r0† ¡ Ñ V

in ind
r<a …r; r0†; …31 b†

respectively. ¡ Ñ V
in p
r<a …r; r0† has been replaced by Ein p

r<a …r; r0† which is given for r > r0

by (see appendix A)

Ein p
r<a …r; r0† ˆ

e

2p"0

X

m 5 0

…2 ¡ ¯0;m †

… 1

¡ 1

dq

2p

1
"k …!†

jqj exp …iqz† cos ‰m…’ ¡ ’0†ŠIm …jqjr0†K
0

m…jqjr†er…
¡

1
"? …!†

m sin ‰m…’ ¡ ’0†Š
r

exp …iqz† Im …jqjr0†Km…jqjr†e’

‡
1

"? …!†
iq exp …iqz† cos ‰m…’ ¡ ’0†Š Im …jqjr0†Km…jqjr†ez : …32†

Using the boundary conditions on the electric and the displacement ® eld, the coe� -
cients C m …q; !† and D m…q; !† can now be determined:

C m…q; !† ˆ
Im…jqjr0†

"? …!†D m …q; !†
‰"? …!†"k …!†Š1=2

I
0

¸m …!†
"? …!†
"k …!†… †

1=2

jqja

2
4

3
5Km …jqja †

8
<

:

¡ "? …!†I¸m …!†
"? …!†
"k …!†… †

1=2

jqja

2
4

3
5K

0
m…jqja †

9
=

;; …33 a†

D m …q; !† ˆ
Im …jqjr0†

"? …!†Dm …q; !†
…K

0

m …jqja †Km…jqja † ¡ "? …!†Km …jqja †K
0

m…jqja ††: …33 b†
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4.3. Determination of the surface plasmon excitation probability
In the preceding section, the potential has been calculated for any possible con-

® guration. Now, the excitation probability (equation (7)) needs to be evaluated.
Taking into account the di� erent expressions for the potential, the following expres-
sion is obtained:

dP
surf …!†
d!

ˆ
e

p v2 Im
… ¡ y0

¡ 1
dy exp ¡

i!y

v

… ¡ y0

¡ 1
dy

0 exp
i!y

0

v
V

out ind
r>a …r; r0†

‡
… y0

¡ y0

dy
0 exp

i!y
0

v
V

in ind
r>a …r; r0† ‡

… 1

y0

dy
0 exp

i!y
0

v
V

out ind
r>a …r; r0†

‡
… y0

¡ y0

dy exp ¡
i!y

v

… ¡ y0

¡ 1
dy

0 exp
i!y

0

v
V

out ind
r<a …r; r0†

‡
… y0

¡ y0

dy
0 exp

i!y
0

v
V

in; ind
r<a …r; r0† ‡

… 1

y0

dy
0 exp

i!y
0

v
V

out ind
r<a …r; r0†

‡
… 1

y0

dy exp
¡ i!y

v

… ¡ y0

¡ 1
dy

0 exp
i!y

0

v
V

out ind
r>a …r; r0†

‡
… y0

¡ y0

dy
0 exp

i!y
0

v
V

in ind
r>a …r; r0†

‡
… 1

y0

dy
0 exp

i!y
0

v
V

out; ind
r>a …r; r0†

r0ˆ …x 0;y
0
;0†

rˆ …x0 ;y;0†

: …34†

The integration boundary y0 is determined by the intersection of the tube circum-
ference with the electron trajectory and is given by y0 ˆ …a

2
¡ x

2
0†1=2.

By inspection of the di� erent integrals, it is found that equation (34) can be
considerably simpli® ed. In fact the double integrals over dy and dy

0 can be factored
out so that only the following one-dimensional integrals remain.

C
o
m …q; !† ˆ

… 1

y0

cos
!y

v
Km …jqjr† cos …m’† dy …35 a†

C
i
m …q; !† ˆ

… y0

0
cos

!y

v
Im …jqjr† cos …m’† dy …35 b†

S
o
m …q; !† ˆ

… 1

y0

sin
!y

v
Km …jqjr† sin …m’† dy …35 c†

S
i
m …q; !† ˆ

… y0

0
sin

!y

v
Im …jqjr† sin …m’† dy …35 d †

G m …q; !† ˆ

… y0

¡ y0

exp ¡
i!y

v
I¸m …!†

"? …!†
"k …!†… †

1=2

jqjr

2
4

3
5cos …m’† dy …35 e†

S m …q; !† ˆ

… y0

¡ y0

exp ¡
i!y

v
I¸m …!†

"? …!†
"k …!†… †

1=2

jqjr

2
4

3
5sin …m’† dy …35 f †

With the de® nitions, the surface plasmon excitation probability becomes
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dP
surf …!†
d!

ˆ
¡ e

2

4p3"0 v2

X

m 5 0

…2 ¡ ¯0;m †

… 1

¡ 1
dq …4 Im ‰A 0 …q; !†Šf C

o
m …q; !†‰ Š2‡ S

o
m…q; !†‰ Š2g

‡ 4 Im ‰C 0 …q; !†Š‰C o
m …q; !†C

i
m …q; !† ‡ S

o
m …q; !†S

i
m …q; !†Š

‡ 2 Im fB
0
m…q; !†‰C o

m …q; !†G m…q; !† ‡ iS o
m…q; !†S m…q; !†Šg

‡ 2 Im fD
0

m …q; !†‰C i
m …q; !†G m …q; !† ‡ iS i

m …q; !†S m …q; !†Šg† …36†

where

A
0

m…q; !† ˆ
Am…q; !†
Km…jqjr0†

; …37 a†

B
0
m…q; !† ˆ

Bm …q; !†
Km…jqjr0†

; …37 b†

C
0
m…q; !† ˆ

C m…q; !†
Im …jqjr0†

…37 c†

and

D
0

m …q; !† ˆ
D m…q; !†
Im …jqjr0†

: …37 d †

} 5. Determination of the volume plasmonexcitationprobability
Based upon the local response assumption, the energy loss of an electron pene-

trating through a graphitic carbon cylinder can be calculated using equation (10). On
each unit path length dy of the trajectory, the electron can be assumed to travel
through a in® nitely thin planar graphitic crystal with its c axis oriented along the
radial unit vector of the cylindrical coordinates at the position r0 (® gures 2 and 5).
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Figure 5. Model for the determination of the volume plasmon excitation probability of an
electron penetrating a carbon nanotube. On the in® nitesimal path interval dy the
electron travels through a uniaxial graphitic layer with its c axis oriented radially at
the position of the electron. The ® gure shows the orientation of the graphitic layers for
two di� erent positions of the electron.



The angle ¬ between the c axis of the oriented piece of graphite and the trajectory
of the electron depends on the position of the electron. If the position is parametrized
by y (distance of the electron to the (x ; z) plane) , then

cos ¬ ˆ
y

…x 2
0 ‡ y2†1=2 …38 a†

and

sin ¬ ˆ
x 0

…x 2
0 ‡ y2†1=2 : …38 b†

The volume plasmon excitation probability of an electron penetrating a carbon
nanotube can then be obtained from equation (10) by numerical integration over
the trajectory of the electron:

dP
volume…!†

d!
ˆ

… y0

¡ y0

dy
d2

P
volume…!; y†
d! dy

; …39†

where y0 is given as before by y0 ˆ …a
2

¡ x
2
0†1=2. With the explicit expression for the

surface and volume plasmon excitation probabilities (equations (36) and (39)) the
total plasmon excitation probability of a carbon nanotube is

dP
total…!†
d!

ˆ
dP

volume…!†
d!

‡
dP

surf ace…!†
d!

: …40†

As mentioned in } 3, the inner cavity of a carbon nanotube might be of importance
for the volume plasmon excitation probability. In order not to overestimate this
probability we propose to adapt the integration range for this case:

dP
volume…!†

d!
ˆ

… ¡ yi

¡ y0

dy
d2

P
volume…!; y†
d! dy

‡
… y0

y i

dy
d2

P
volume…!; y†
d! dy

: …41†

y i ˆ …r
2
i ¡ x

2
0†1=2, where r i is the radius of the inner cavity, so that the integration

only takes into account the ® lled part of the cylinder.

} 6. Conclusion
In a recent publication (StoÈ ckli et al. 1998a) it has been shown by means of the

example of nested concentric-shell fullerenes that the inclusion of anisotropy in the
non-relativistic local dielectric response theory for the excitation of the plasmons of
carbon nanostructures introduces important changes compared with the isotropic
model. Since then, experimental EELS data of multishell fullerenes have become
available (StoÈ ckli et al. 1998b). The comparison of those data with the simulations
e� ectuated with the two formalisms (isotropic and anisotropic) shows that the inclu-
sion of anisotropy in the model is essential in order to reproduce the data. The
calculations presented in this contribution represent a straightforward continuation
of the work on the theoretical background for the interpretation of plasmon loss
electron-energy-loss spectra of graphitic carbon nanoparticles. In fact, the formalism
developed here allows electron-energy-loss spectra of carbon nanotubes to be simu-
lated as a function of their geometrical parameters for any impact parameter
(electron passing inside and outside the particle) as well as intensity line pro® les of
energy-® ltered images. It represents one of the missing pieces for better understand-
ing of the physical properties of carbon nanostructures. We are con® dent that a
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detailed comparison of the experimental data of nested concentric-shell fullerenes
and multiwall carbon nanotubes with simulations of the plasmon excitation
probabilities based on our calculations will contribute to a better understanding of
the physical properties of multiwall carbon nanostructures. In particular, it will be
possible with our model to investigate how the intrinsic properties of multishell
fullerenes di� er from those of multiwall nanotubes and from those of planar gra-
phite.
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A P P E N D I X A
From the ® rst of the Maxwell inhomogeneous equations relating the displace-

ment ® eld to the charge density and the phenomenological relation between the
displacement and the electric ® eld the following equation for the electric ® eld inside
an in® nitely large medium with the anisotropy of a carbon nanotube is found:

Ñ r·~"…!†E…r; r0† ˆ
»…r; r0†

"0
: …A 1†

The charge density represents the incoming probe electron and can be written in
terms of a Dirac function:

»…r; r0† ˆ ¡ e¯…r ¡ r0†: …A 2†

In order to solve this inhomogeneous equation we introduce the scalar function
F …r; r0† de® ned by

~"…!†E…r; r0† ˆ ¡ Ñ rF…r; r0†: …A 3†

Equation (A 1) then becomes

r
2
r F …r; r0† ˆ

e

"0
¯…r; r0†: …A 4†

Formally this equation is identical with the Laplace equation. However, F …r; r0† is
not the Coulomb potential, but only a mathematical construction introduced for
convenience. From equation (A 4) it is found that F …r; r0† is given by

…r; r0† ˆ ¡
e

4p"0jr ¡ r0j

ˆ ¡
e

2p"0

X

m 5 0

…2 ¡ ¯0;m † cos ‰m…’ ¡ ’0†Š
… 1

¡ 1

dq

2p
exp …iqz† Lm …jqjr ; jqjr0†;

…A 5†

where the function Lm …jqjr ; jqjr0† is given in equation (18 b). Using the de® nition of
the function F …r; r0† and the gradient in cylindrical coordinates, the electric ® eld is
obtained from equation (A 5):
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E…r; r0† ˆ ¡
e

2p"0

X

m 5 0

…2 ¡ ¯0;m†
… 1

¡ 1

dq

2p

1
"k …!†

exp …iqz† cos ‰m…’ ¡ ’0†Š @

@ r
L m…jqjr ; jqjr0†

¡
1

"? …!†
exp …iqz†

m sin ‰m…’ ¡ ’0†Š
r

L m …jqjr ; jqjr0†

1
"? …!†

iq exp …iqz† cos ‰m…’ ¡ ’0†ŠL m …jqjr ; jqjr0

0
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