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Collective oscillations in a single-wall carbon nanotube excited by fast electrons
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Electron energy loss spectroscopy is a well adapted tool for the investigation of the valence excitations of
individual nanometer-size particles. The interpretation of the loss spectra of such small particles, however,
relies in most cases on a quantitative comparison with simulated excitation probabilities. Here we present a
formalism developed for the interpretation of the energy loss data of single-wall carbon nanotubes based on the
hydrodynamic theory of plasmon excitations by high-energy electrons. The nanotubes are modeled as a two-
dimensional electron gas confined on the circumference of a cylinder. The plasmon excitation probabilities,
directly comparable to measurements, are discussed for various parameters.
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I. INTRODUCTION tion probabilities have only been calculated by kinal 3°-3!

One of the most fascinating aspects about single-wall carand Vasva. 2 In their approaches it is assumed that the
bon nanotubésis that their electronic properties critically excitation is induced by a homogeneous electric field. This is
depend on their geometry. Experimentally, such theoreticarue for optical measurements, but does not hold for elec-
predictioné~*have proven difficult to validate since even the trons. In the case of nested concentric-shell fullerenes it has
most recent production methdd8 yield a mixture of tubes for instance been shown that the plasmon excitation prob-
of different helicities and diameters. Purification mettfods ~ @bility depends on the position of the electron probe on the
have been proposed but a separation of the tubes accordifgticle:” This dependence on the impact parameter cannot
to helicity and radius is not yet possible. One way to over-P€ reproduced when one assumes that the plasmons are ex-
come these experimental problems consists in the investig&it€d by a homogeneous time-dependent electric field. In this
tion of the properties of individual particles. This requires contribution we propose a model for the interpretation of
local probe techniques capable of imaging a nanotube witfrELS data of the plasmons of individual single-wall carbon
atomic resolution and of measuring at the same time it§!2notubes. Our approach basically is an extension of the hy-
physical properties. Scanning tunneling microscégym), ~ drodynamic formalism of the collective excitations of the
for instance, fulfills these conditions and has proven useful iryalence ele%rzogns In carbon24nanotubes proposed by Yan-
the study of carbon nanotubes. Important information aboufiouleaset al.”>or Jianget al™" The extension consists in a

the electronic structure and its dependence on the geometfjgh-énergy TEM electron that passes through or close by
of the nanotube has thus been obtaifsd® Another local  the carbon nanotube. The Coulomb interaction between the

probe technique, atomic force microscofdFM) has also two systems has been included and the plasmon excitation
proven useful in the study of carbon nanotubes. The abiliProbability has been derived for this transmission geometry.
of this technique to apply a force on nanometer-size particled '€ €xpression of the excitation probability has been evalu-
has been used to determine the mechanical properties of vaft€d with typical experimental parameters for nanotubes of
ous types of carbon nanotub@s?2 different radii. Our results can directly be compared to en-

Despite these recent advances in the characterization 6f9Y filtered TEM images or EEL spectra of individual
carbon nanotubes, there is still a need for additional informaSingle-wall carbon nanotubes and therefore should represent

tion. An alternative local probe technique such as electro® useful basis for the interpretation of such measurements.
energy loss spectroscopiZELS) in a high-resolution trans-

mission electron microscopéHRTEM) might therefore II. HYDRODYNAMIC FORMALISM

prove useful. Quantitative information can for instance be
obtained on the high-energy collective excitations of the va-
lence electrons. The interpretation scheme of the valence loss For the simulations of the plasmon-loss spectra of single-
spectra usually involves a comparison of the experimentalvall carbon nanotubes two problems must be solved. First,
data with simulated excitation probabilities. A number of the-the electronic properties of a tube have to be modeled. We
oretical studies treat the plasmon excitations of single-walassume that a single-wall nanotube consists of quasifree elec-
carbon nanotub&s-33 Most authors, however, exclusively trons confined onto a cylindrical shell of radiasand of
treat the plasmon dispersion relatici-2® Plasmon excita- infinite length(Fig. 1).2* The electronic properties of the tube

A. General considerations
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FIG. 1. Geometric parameters of the problem: The probe elecV ¥ (r,t) andn(r,t) are the perturbations of the velocity po-
tron, located at(t), is traveling parallel to thg axis at a given  tential and the charge density of the two-dimensional elec-
impact parametex, in negativey direction. Its position is charac- tron gas, respectivel}/(r,t) represents the electric potential
terized in cylindrical coordinates with the radipig(t) and the angle resulting from the electrons on the cylinder and from the
¢o(t)- probe electron. The constargsm,, andn, are the elemen-

tary charge, the effective electron mass, and the number of
are determined by the dynamics of the electron @8&c.  electrons participating in the excitation per unit area, respec-
Il B). Second, the interaction of the TEM probe electronstively. Equation(3a) is the integral form of Newton’s equa-
with the nanotube needs to be taken into account. We supion of motion. Damping needs to be included in order to
pose independent scattering events, treat the electron clasgirake the system nonconservative. If this is omitted, the elec-
cally, and neglect relativistic effects. Furthermore we assume@on does not lose any energy when passing by or through the
that the electron moves at constant veloeitpn a straight  particle. Damping is contained in the phenomenological fric-
line (Fig. 1). These approximations are identical with thosetion term, proportional to the velocity potential. The constant
made in nonrelativistic local dielectric response theory of theof proportionality, the damping coefficient, is the inverse
plasmon excitations of nanometer-size particl® a re-  of the characteristic collision time. As in the Drude model of
view, see Ref. 36and have proven to be valid in various metals, y represents the full width at half maximum of the
comparative studies between experimental data and simulgiasmon resonance peak. The term linear in the electron den-
tions. The advantage of this approach is that the potentiaity can be regarded as diffusion potential of the electrgns.
distribution induced by the TEM probe electron passingjs the root mean square propagation speed of the density
through or close by a single-wall carbon nanotube can bgisturbance through the electron gas. In the case of a two
calculated explicitlySec. Il Q. The energy loss of the probe gimensional electron ga8? is related to the Fermi velocity
electronAE can then be deduced from the potential distri-yi5 the reIationB2=1/2v§ 42 Equation(3b) is the continuity
bution by integration of the elementary work done to theggyation for the 2D confined conduction electrons of the
electron by the induced electric fielgpolarization of the  cyjinder. Since the electrons are confined on a cylindrical
nanotubg surface, Newton’s equation of moti¢Eq. (3a)] and the con-
tinuity equation Eq. (3b)] must be evaluated on the surfgge
of the cylinder. Finally, Eq(3c) is the Poisson equation and
AE:jtrajectowF(X’t)'dxz ftrajectory(_e)E(X't)'dX' (D) has to be solved in all space[r—rq(t)] represents the
probe electron located at positiop(t).
In the last step of the calculatiofSec. Il D the plasmon
excitation probability is deduced from the expression of theC. Solution of the Bloch equations for the nanotube geometry
energy los$Eq. (1)] by elimination ofAE using the relation The solution of the Bloch equatiof&gs. (38—(30)] is
straightforward, once the problem is put correctly. In a first
dP(w) step it can be realized that the substitution of Ep) in the

AE= J'O ho do do. 2) Laplacian of Eq(3a) allows one to eliminate(r,t), so that
the original set of equations simplifies to

B. Dynamics of the electron gas

1( 9 e _, B,
: —| —+y—|n(r,t)=——V2V(r,t)+ —V?n(r,t)| s,
We assume that a single-wall carbon nanotube has a cydg\ gt2 * dt Me No

lindrical shell structure whose thickness is negligible in com- (4a)
parison to its diameter. Therefore, the valence electrons are

considered to distribute on a cylindrical surf&&defined by 5 e

a delta function in cylindrical coordinates. In consequence Vav(ry = G—O{n(r,t)+6[r—r0(t)]}.
the motion of the conduction electrons is also confined in

this cylindrical shell. The dynamics of the two-dimensional The appropriate boundary conditions for these equations
(2D) electron gas and the effect of the incoming probe elecfor the nanotube geometry ate) the vanishing of the nor-
tron are treated using the linearized hydrodynamic equationsal component of the velocity perturbation at the surface of
of Bloch [Egs. (38—(3¢)]:6~# the cylinder,(b) the vanishing of the potential as—, and

(4b)
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(c) the finiteness of the electric potential at the origin. Con-Equations(7a)—(7c) with the boundary conditions Eq&3a)

dition (a) is automatically satisfied, since we assume theand(8h) represent the problem of the plasmon excitations of
electrons to be confined on the cylindrical shell. Conditionsa single-wall carbon nanotube. The solutions of the inhomo-
(b) and(c) will allow the expansion of the potential and the geneous differential equatiogb) and(7c) are composed of
charge density disturbance in Fourier-Bessel series. The cy homogeneous and an inhomogeneous term each. Indexing
lindrical shell (nanotubg separates space into two regions, the homogeneous solution iffitbr induced potentialand the

the inside and outside of the nanotube. For the determinatioimhomogeneous solutiom (for particular solution, the solu-

of the electric potential it is useful to treat these regionstions of Eqs.(7a) and(7c) read

separately. For this purpose, E@lb) is replaced by two

equations, which yield the electric potentM}-,(r,t) out- Vp>a(f,w)=v£>a(r,w)+vi,?ga(f,w) (93
side andV,,_,(r,t) inside the tube separately. Both have to
satisfy the same differential equation, namely, and
2 ~
VAV 2 a(r,1) :Eé[r—ro(t)] ) Voca(r,o)=VP_(r,0)+ V12 (1, 0), (9b)
Vzvp<a(r,t) 0

respectively. The inhomogeneous term representing the di-
V,=a(r,t) andV,.4(r,t) are related to each other by addi- rect potential of the probe electron is the same for both equa-
tional boundary conditions which will be discussed below. Attions. In cylindrical coordinates it is given in terms of a
this point it has to be realized that the response of the 2Fourier-Bessel expansiti*

electron gas is frequency dependent. For this reason it is

imperative that the equations and the boundary condltlonsvp<a(r w)= Vp>a(r )

are written in frequency space. Using the convention that the

Fourier transform of a functioi\(r,t) from time into fre- j dte""t( —€
quency space is given by Amey |r—ro(t)]

A(r,w)=f e'“'A(r,t)dt (6) > (2— 50m)f —e'qu dteet
% 2’7T60 m=0
and the inverse Fourier transform from frequency into time x codm[ ¢ — @o(H) Il |alp.]alpo(t)]
space is given by
(10)
1 (= .
A(r,t)= Ej e "“'A(r,w)dw (6b)  where
Equations(4a)' (4b), and(S) become Lm[|Q|P1|Q|P0(t)]:Km(|Q|P)|m[|Q|PO(t)]0[P_PO(t)]
+Kullalpo(t)11m(|alp) Ol po(t) = p].
n(r ) )
—w(w+iy) =——V2V(I’ w)+ BV = , (12
0 eS
r(7{;\) The functiond(x) in Eq. (12) is the Heaviside step function
given by
~ e .
VAV, a1, @) = — 8(X—Xo) 8(z) €'Y, (7b) 1 for x>0
UV €g 1
O(x)= (12)
and 0 for x<O.

_ e . The homogeneous solutions of E¢gb) and (7¢) repre-
VAV, a1, 0)= —65(x—x0)5(z)e"“y’”, (70 sent the induced potential due to the charge distribution on
Vo the cylindrical shell generated by the probe electron. Yet un-
respectively. Now, the boundary conditions relatingdetermined, they are expanded into Fourier-Bessel series
V=a(r,w) to V,_4(r,0) in frequency space can be intro- with coefficients Ay(q,0), By(d,0), Cn(g,0), and
duced. They aréd) the continuity of the electric potential D (g, ):

vp>a(ruw)|p4>a:‘\7p<a(r:w)|p*>a (Sa) '\-'/ind (r w): —€ 2 (2_50 )
and(e) the relation obtained by integration of the inhomoge- ra 2mey m=0 "
neous Maxwell equation relating the displacement field to = dg
the charge density X J_ 5,1 COSMP)An(Q, @)
Jd~ d ~ e~ ) iz
%Vp>a(r1w)|p~>a_ %Vp<a(rrw)lpﬁaze_on(rvw)lpﬂa- + sin(me)By(q, w) e Km(|Q|a)|m(|q|P)’
(8b) (133
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VM w) = o D (2- Bopm)

27760 m=0

< d
X fﬁwﬁ[cos{mwcm(q,w)
+ sin(Me) D (0, ) 1€ 9K (gl p) I m(|gla) .

(13b)

The unknown series coefficient®\,(q,»), B (g,w),

Cm(g,w), andD,(q,w) are going to be determined by the

boundary conditions Eq$8a and (8b).

In order to find the solution of Eq7a) the charge density
fluctuation is also written in terms of a Fourier-Bessel series
with unknown coefficientsE,(q,») and F,(q,w) which

will be determined by substitution in E¢7a).

> (2= 8umd(p—a)

n(r,w)= Tmeq o
X fﬁmﬂ[cosm@Em(q,w)

+ sin(me)F m(q, ©)]1€'9%K (|gla)l m(|ala)
(14

The differential Eqs(7a—(7¢) are now solved. Substitution
of V- o(r,0), V,_4(r,w), andn(r, ) in the boundary con-
ditions [Egs. (8a) and (8b)] and in Eq.(7a yields a set of
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Em(qvw)

2
{—w(w-l—iy)—l—ﬁz %—l—qz)

en, [ m?
® ¥+q2)[01m<q.w>+Am<q,w>]

Me

(183
and

2

—w(w+iy)+ﬂ2(%+q2 Fn(0,)

2

eny[ m

"l 2 T
a

me [Sln(q, @) +Bm(q,@)],

(18b)

where we have introduced the functions,C},») and
Sln(g,w) defined by

* Kul[alpo(t)]
\y|/udt coq wt)cog m(po(t)]m

Im[|Q|P0(t)]
Im(|ala)

(193

Cly(q,w)=2

yl/v
+ Zfo dtcog wt)cog meg(t)]

three linear equations for the six coefficients. Matching theand
linearly independent sine and cosine terms in each equation,

one obtains a set of six equations for six unknowns. The %

coefficients can thus be determined straightforwardly.
From the continuity of the electric potentidq. (8a)] it is
immediate that

An(Q,0)=Cn(q, @) (153
and
Bm(0,@)=Dp(q, ). (15b
Using the identit§®#®
1
) Kmn(X) = Tn(X) K () = X (16)

the boundary condition Eq8b) leads to the relations

1 e
Am(q,w)5= - e_oEm(qaw)I m(|q|a)Km(|q|a) (179

and

1 e
Bm(qaw)a: - :OFm(qaw)l m(|q|a)Km(|q|a)- (17b)

The substitution of the expression of the potenizds. (9a)
and (9b)] and the charge density fluctuatipBqgs.(14)] into
the equation of motiofiEq. (78] yields

o . Kl ldlpo(t)]

Sl (q,w)=2i M/Udtsm(wt)sw{mgoo(t)]—Km('qla)
(M : I |l po(D)]
+2If0 dtsm(wt)sn’[m(,oo(t)]w
(19b

Equations(179—(18b) form a set of four linear equations

for the four remaining coefficients. The solution of the sys-

tem gives
-1 €g
Em(q,w)= aKm(|q|a)|m(|q|a) EXm(Qaw)Clm(qyw),
(208
_ €0
Fm(d,0)= aKm(|q|a)|m(|q|a) EXm(q-w)SIm(qu’)u
(20b)
Cin(d,0)=An(d,@) = xm(d,0)Cln(q,0), (200
and
Din(0,0)=Bm(q,®)=xm(d,®)Sly(q,»), (200)

where y (0, w) is the function
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2

02| =+ ¢?| akn(ldla) m(lala)
2 707 |akn(la2)ln(lq

p

(21)

Xm(d, @)= >

m 2 2
_2+q ) _QpaKm(|q|a)|m(|q|a)
a

2

. ) m . 2
w(otiy)—pB ¥+q

Q, is given by Q,=\e’ny/eom,, whereny is the surface Due to symmetry, is assumed to be zero. In the same way
electron density of the graphitic shell. Assuming that thethe space variable with the cylindrical coordinatep, ¢,
layer has a finite thicknes Q, can be related to the bulk andz, can be expressed in terms of the Cartesian coordinates
electron density of graphite by the relation X, Y, andz
— 2 2

02=w3d, (22 =YY (279
where w, is the plasmon resonance frequency of planar
graphite, which is related to the bulk charge denbigyin the
usual way:

o= arcco% E) (27b)

Once the potential substituted in E(R4), the excitation
— 22N probability can be found by elimination &fE using Eq.(2).
@p= VE"No/ oM. @3 This implies that thew integral in expressio24) from mi-
nus to plus infinity is transformed to an integral from zero to
dnfinity. This is possible since the response of the system is
causal. After the necessary transformations the plasmon ex-
citation probability of a single-wall carbon nanotube be-

Note that when the denominator 9f,(q,) is put equal
to zero, the plasmon dispersion relation is obtained. If th
damping coefficienty and the pressure terg are put equal
to zero our result is identical to the particular case of a one
layer tube of the dispersion relation obtained by Yannoulea§°Mes
et al=>

dP(w) e? de
do =73 E (2_50,m)J' dg/Im[ xm(q, )]
D. Energy loss of a probe electron mhv €9 m=0 0
Knowing the electric potential, it is possible now to cal- o wy
culate the energy loss of an electron passing through or close X(Im(qa) y dy) | cogme)co o Cln(q, @)
0

by the single-wall nanotube. For this purpose the Fourier
transform of the electric fielE(X,w)=—VV(X,w) is in- ] [ wy

serted into Eq(1). Since no volume plasmon can develop on + Sln(mq:)sm( T) Im[Sly(g,w)]
the two-dimensional shell, only the induced potentgir-

Km(qp)]

face lossesneeds to be considered. Yo wy
+Km(qa) | dyj| cogme)cog —=|Cly(, o)
0
AEziJm dyfw dwe 9| St o)
27) —w —w ay ’ B ' . [ wYy
r=(xp.y,0) + sin(me)sin — | IM[ Sl,(d,®) ]| m(ap) | ]|-
(24) v
- - gvind - (28
The induced potentidV"(r,w) is the homogeneous part of
the solution of Eq(7a). If the probe electron passes through the nanotube the in-
. tegration boundaryy, is given byy,= \/a’— xo2 which is half
<ind V',?ga(r.w) for p<a, the distance the electron travels inside the tube. If the elec-
VI(r,w)= gind for o= (25 tron passes outside the tupgis equal to zero. Note that the
p=a(lw) for p>a. upper boundary of the integral ovgrhas been put equal to

Since the integration needs to be done on a straight line it ic the critical wave vectdt! Above this critical wave vec-
useful to reintroduce Cartesian coordinateg(t), param- tor plasmon excitations can transfer their energy to a single

etrized bypo(t), @o(t), andz,, can be expressed in terms of electron and are thus heavily dampééndau damping

the parameters of the trajectory of the electtbig. 1):
1. SIMULATED PLASMON EXCITATION

po(t) = x5+ (vt)?, (263 PROBABILITIES

A. Technical details

Xo All simulations have been done with theAxTHEMATICA
t)=arccos——|. 26Db
¢o(t) %po(t)) (26 software package by Wolfram Research Inc. In order to re-
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Mode m=0 (acoustic)

FIG. 2. 3D plot of the imaginary part of the
function x,(g,w) for the acoustic ih=0) and
the fist optical moderg=1). The maximum of
the function indicated by the solid line on the top
of each plot determines the resonance frequency.
In (@) and (b) the function is plotted for a tube
radius of 0.6 nm as a function of the wave vector
transfer (dispersion relation In (c¢) and (d)
xm(0,w) is plotted against the nanotube radius
for a fixed wave vector transfer of 0.1 Arh

duce computation times, we have taken advantage of thik has been shown in Sec. Il C that the electron density and
possibility to call ¢ or FORTRAN code from within the effective mass always appear together and can be col-
MATHEMATICA . “8 In particular, all Bessel functions have lected to form one single paramet€r,, depending on the
been evaluated using tIF®ORTRAN NAG library code. Special resonance energy, of the bulk plasmon and ot the thick-

care has been taken when evaluating the Bessel functions faess of the graphitic shelD.34 nm

large or small arguments. A rearrangement of the terms of

Eq. (28) allows one to collect- andK-type Bessel functions e?N
in a way that their diverging behavior is compensatfet QSZde= 0), (29)
more details, see Ref. 19 €oMe

We have restricted the simulations to the excitation of the
o+ 7 electrons! The simulations have been carried out

The excitation probabilities shown in this text have beenwith two different values fow, of the o+ 7 electrons: 27.5
calculated for TEM probe electrons passing at an impact paand 21.5 eV. The first is the experimentally determined value
rameterx,=0 (Fig. 1) for typical experimental conditions. of the resonance energy of the bulk graphité¢ 7 electron
The energy of the incident electrons was assumed to be 1Qflasmon?~>*and the second is obtained from estimated val-
keV. The diameter of single-wall carbon nanotubes as proues of the electron density and the effective nf4<& Note
duced by common methodarc discharge, laser ablatiois  that in order to avoid confusion with the plasmon resonance
between 1 and 1.5 nm. The simulations have thus been cagnergy of the single-wall tube we call, the resonance pa-
ried out for tubes with 0.5, 0.6, and 0.7 nm radius. Since theameter. The damping coefficieptdetermines the width of
mean scattering angle for a probe electron exciting a plasthe resonance peak. In planar graphite, the full width at half
mon is small, we suppose that all scattered electrons an@aximum of theo+ 7 electron plasmon resonance is 5%8V.
detected by the spectrometer. Experimentally this is realizethspired by this experimental value we have carried out
if no angle limiting apertures are inserted into the column.simulations with damping coefficients of 2, 5, and 10 eV. For
The maximum scattering angle in this configuration is deterthe Fermi velocity we have taken the value for bulk graphite
mined by the plasmon cutoff wave vector. Most simulations, -=8.110x 10° ms™* given by Wallace?® It turns out that
have been carried out with a cutoff wave vector of 10m  the pressure term is in all circumstances small. In conse-
This corresponds to a scattering angle of 6 mrad for 100 ke\quence a better estimate of this parameter is not crucial.
electrons which is of the order of those for the volume plas-
mon of metals found in the literatufé>® Since the exact
value of the cutoff wave vector is not known for single-wall
carbon nanotubes simulations have also been carried out for As has been pointed out, the theoretical aspects of the
1 nm ! (0.6 mrad at 100 ke\/ plasmons of single-wall carbon nanotubes have been studied

The parameters independent of the experimental condby several author$3-28|t has been established that the spec-
tions (intrinsic to nanotubeare the electron density,, the  trum of a single-wall carbon nanotube is composed of a se-
effective electron mase\,, the damping coefficieny, and  ries of contributions which are due to the polar and multipo-
the Fermi velocityvg (pressure termB). They all appear lar oscillation modes characteristic of the cylindrical
solely in the expression of the functign,(q,») [Eq. (2D)]. geometry. Figure 2 shows the imaginary part of the function

B. Parameters for the simulations

C. Dispersion relation
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xm(0,w) for the first two oscillation modesnf=0 andm 20x108 prer e
=1). For a fixed tube radiusaE0.6 nm the maximum of i Radius: 0.5 nm (a)
the function, indicated by the solid line on the top of each 15t o 1
plot, as a function of the wave vectgrrepresents the dis- -
persion relatiofFigs. 2a) and Zb)]. An acoustic dispersion
behavior’ can be observed for the=0 mode[Fig. 2(a)]
while all higher order modes show the characteristics of op- I
tical dispersionFig. 2(b)]. Figures 2c) and Zd) show the 50
dependence of the imaginary part of the functigp(q, w) [ ma0 fo
for a fixed wave vector transfer of 0.1 nrhplotted against [ et s Ime2 X e
the nanotube radius. It can be observed that the resonance 0 5 10 15 20 25 30 35
energy strongly depends on the nanotube radius. Moreover, Energy [eV]
this dependence is clearly different for the acou$kdg. 20x10™® e
2(c)] and for the optical moded=ig. 2(d)]. [

With regard to the information accessible by EELS in a
HRTEM, Fig. 2 elicits two questions. First, one would like to
know which of the modes will give the most important con-
tribution to the spectrum and second, at what energy the
plasmon resonance can be observed when all scattering i
angles are collected. In Sec. Il D we discuss the plasmon 5L
excitation probabilities for TEM electrons passing through [
the center of a single-wall nanotulignpact parametek L RN
=0) calculated with the results of Sec. Il. We will show that 0 5 10 15 20 25
the simulated data gives the answer to the two questions Energy [eV]
mentioned above. 20%107 e

10k

dP(w)/dw [1/eV]

M3

Radius: 0.6 nm
151

10F

dP(w)/dw [1/eV]

Tl

r Radius: 0.7 nm
D. Excitation probabilities 15 1

Figure 3 shows the excitation probabilities obtained with
a resonance parameter of 27.5 eV, a damping coefficient of 2
eV and a critical wave vector of 10 nm for three different i
tube radii(0.5, 0.6, and 0.7 nin The different contributions 5[
of the first seven oscillation modes and the total excitation I A
probability (solid line) for each tube radius are shown. The [ ﬂu &
acoustic moderq=0) causes an increase of the excitation O 90"35 20 25 30 35
probability towards the low energy losses. The first optical Energy [eV]
(m=1) mode determines the onset of the plasmon resonance
peak. It can be seen in Fig. 3 that the position of the maxi- FiG. 3. Plasmon excitation probability for a TEM probe electron
mum of the excitation probability depends on the tube rapassing at an impact parametey=0 through single-wall carbon
dius. The plasmon resonance energy of smaller tubes ianotubes ofa) 0.5, (b) 0.6, and(c) 0.7 nm radius. The curves have
higher than that of larger tubes. The modes superiomto been simulated for 100 keV electrons assuming a cutoff wave vec-
=1 are responsible for a fine structure in the high-energyor of 10 nm . The resonance parametep was 27.5 eV and the
flank of the plasmon resonance. The intensity of each contridamping coefficienty 2 eV. The total excitation probability is indi-
bution decreases as the mode number increases. The enefgjed by a solid line. The contributions of the individual modes are
interval between successive contributions depends on th@ashed.
resonance mode and the tube radius. In larger nanotubes, the
oscillation modes are closer together than in smaller ones
(Fig. 3). For a given radius the spacing between two succesdes the higher order oscillations become more important as
sive modes becomes smaller as the mode number is iompared to the first order mode. This tendency could be-
creased. come even more pronounced if the restriction of infinitely

The cutoff wave vectoq, determines at what rate the long nanotubes is omitted. When nanotubes of finite length
intensity of the higher order modes decreases. Figure 4re considered the wave vector transfer is not only limited by
shows this dependence for a single-wall tube of 0.6 nm rathe critical wave vector, but also by the length of the nano-
dius for two values ofj, (1 and 10 nm?). The curves have tube lI<qg=q, .36 With regard to the tendency observed in
been simulated with a resonance parameter of 27.5 eV andFg. 4 one can expect the contribution of the higher order
damping coefficient of 5 eV. It can be observed that for themodes to be enhanced as compared to the lower order
smaller cutoff wave vectors the first oscillation mode yieldsmodes. In this case it is possible that the maximum of the
the most important contribution and the maximum of theplasmon excitation probability is at 20.5 eV, the position of
excitation probability is at 14.5 eV. However, for larger val- the second order oscillation mode.

10F

dP(w)/dw [1/eV]
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dP(w)/dw [1/eV]
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0 65 10 15 20 25 30 35 Energy [eV]

Energy [eV]

FIG. 6. Excitation probability for a single-wall carbon nanotube
of 0.6 nm radius. The simulations have been carried out with a
resonance parameter of 21.5 eV, a damping coefficient of 5 eV, and
a critical wave vector of 1 nm'.

12X10‘3 UASLE IS ULIURE SLAULAE IS IULSLE L

10F

on the number of electrons participating in the excitation and
their effective mass. Theoretical estimates of these param-
eters lead to a resonance parameter of 21.5 eV. Figure 6
shows the excitation probability of a single-wall carbon
L nanotube obtained with 21.5 eV, a damping coefficient of 5
SirierEeer £riafil... eV, and a critical wave vector of 1 nm. It can be seen that
15 20 25 30 35 _ :
Energy [eV] taking 21.5 eV instead of 27.5 eV for the resonance param-
eter causes the plasmon resonance to occur at a much lower
FIG. 4. Plasmon excitation probability for a single-wall carbon energy. In Fig 6 a small cutoff wave vector and medium
nanotube of 0.6 nm radius obtained with a cutoff wave vectgalof ~damping have been assumed. The maximum of the simulated
1 and(b) 10 nmi . The curves have been simulated for 100 keV spectrum is therefore found at the first order excitation mode.
electrons with resonance parameigy of 27.5 eV and a damping  Analogous to the case with a resonance parameter of 27.5 eV
coefficienty of 5 eV. simulations(not shown show that strong damping or large
cutoff wave vectors cause the maximum to be shifted to the
Another situation where the overall maximum of the ex-position of the second order resonance.
citation probability is not at the position of the first order
excitation is shown in Fig. 5 where the effect of strong
damping is demonstrate@amping coefficienty=10 eV).
Hardly any fine structure due to the different modes can be The hydrodynamic theory of a two-dimensional electron
detected and the center of the broad maximum is now foungas has been used to derive the probabi“ty of a TEM probe
at 23 eV. Figures 2-5 have been simulated with a resonanGgectron to lose a given amount of energy when passing
parameter,, of the o+ 7 electrons of 27.5 eV as obtained through or close by a single-wall carbon nanotube. This plas-
from the experimental EELS data of planar graphite. As dismon excitation probability is of interest since it can directly
cussed in Sec. Ill B, simulations of the electronic propertiesse compared to experimental EEL spectra of individual
of graphite based on the hydrodynamic approach are baseghgle-wall carbon nanotubes. The simulations indicate that
such a spectrum should show a fine structure due to the dif-
6x10°° prerrprrrr e ferent oscillation modes possible in the cylindrical geometry.
3 E The energy interval between successive maxima in the fine

dP(w)/de [1/eV]
Gt

1 EEFEE
0 5 10

IV. CONCLUSION

5j 1oy ] structure decreases when the mode number or the tube radius
g af 3 is increased. In normal experimental conditions the dipolar
5 o ] mode is shown to be the dominant mode which determines
% 3 3 the position of the overall maximum of the excitation prob-
g 2F E ability. There are, however, conditions in which the second

3 order mode can dominate the spectrum. This is the case
3 when the plasmon cutoff wave vector is large, when the
nanotube is short, or when the plasmon oscillation is strongly
° 5 10 15 20 25 30 3% damped. The simulations further show that the plasmon os-
Eneroy V) cillation behavior depends on the radius of the nanotube. An
FIG. 5. Plasmon excitation probability for strong damping ( increase of the tube radius causes the plasmon resonance to
=10 eV) for a single-wall nanotube of 0.6 nm radius. The reso-O0ccur at lower energies. It will be interesting to compare the

nance parametes, was 27.5 eV and the cutoff wave vectyrwas ~ simulations shown here with experimental spectra of indi-
1nmt vidual single-wall carbon nanotubes. Up to now, only mea-
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