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We have assembled tin dioxide nanobelts with low-power microheaters for detecting dimethyl
methylphosphonatesDMMPd, a nerve agent simulant. The electrical conductance of a heated
nanobelt increased for 5% upon exposure to 78 parts per billion DMMP in air. The nanobelt
conductance recovered fully quickly after the DMMP was shut off, suggesting that the single-crystal
nanobelt was not subject to poisoning often observed in polycrystalline metal oxide sensors. While
the sensitivity can be improved via doping nanobelts with catalytic additives, directed assembly or
growth of nanobelts on microsystems will potentially allow for the large-scale fabrication of
nanosensor arrays. ©2005 American Institute of Physics. fDOI: 10.1063/1.1861133g

Metal oxide sensors are commonly used to monitor a
variety of toxic and inflammable gases in an air pollution
monitoring system, food industry, medical diagnosis equip-
ment, and gas-leak alarms. The sensing mechanism is based
on electrical conductance change upon surface reduction-
oxidation sredoxd reactions with gas species.1 Because only
the surface layer is affected by the reaction, the sensitivity of
a metal oxide sensor increases for decreasing thickness, mo-
tivating the development of thin film metal oxide sensors.
However, one common problem with polycrystalline thin
film metal oxide sensors is grain boundary poisoning that
limits the repeatability and long-term stability.2,3

Recently, single-crystal ribbon- or belt-like metal oxide
nanostructures have been synthesized.4 Because the nano-
belts are as thin as 10 nm, almost the entire thickness is
affected by redox reactions with gas species. In an earlier
work,5 a bunch of tin dioxidesSnO2d nanobelts deposited on
prepatterned metal electrodes were tested for gas sensing.
When the nanobelts were heated using a thin film heater
deposited on the backside of the wafer, the electrical conduc-
tivity decreased for about 20 times upon exposure to 0.5
parts per millionssppmd nitrogen dioxidesNO2d balanced
with air.

Metal oxide sensors require a high operating temperature
to enhance redox reactions so as to achieve the optimum
sensitivity. This requirement has motivated us to integrate
nanobelts with thermally isolated suspended microfabricated
heaters that can reduce the power consumption so that
battery-operated miniaturized sensor arrays can be obtained.
More importantly, a major challenge for the development of
sensor technologies based on nanobelts or other “bottom-up”
synthesized nanostructures is the large-scale manufacturing
of well-organized nanostructure sensor arrays. In this letter,
we report the assembly of nanobelts with “top-down” fabri-
cated microsystem devices and the use of the as-assembled
sensor to detect dimethyl methylphosphonatesDMMPd, a
nerve agent simulant. DMMP of a concentration as low as

about 50 parts per billionsppbd can be detected by the sen-
sor, and we found that sensor poisoning was eliminated when
a good electrical contact to the nanobelt was made. This
experiment is a step towards the large-scale integration of
nanomaterials with microsystems, and the integration can
potentially allow for the fabrication of low-power, sensitive,
and selective nanosensor arrays.

Figure 1 shows a microheater device that consists of two
adjacent silicon nitridesSiNxd membranes.6 Each membrane
is supported by long, low-thermal conductivity silicon nitride
sSiNxd beams and thermally isolated from the substrate. The
temperature of the membrane can be increased and moni-
tored with the use of a serpentine platinumsPtd resistance
thermometersRTd line patterned on the membrane. With
only 3.8 mW power consumption in the Pt RT, the membrane
temperature can be raised to 500 °C.

Two parallel Pt contact electrodes are patterned on the
two adjacent membranes. We have investigated two methods
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FIG. 1. sad Scanning electron micrograph of the microheater device,sbd an
enlarged image showing the region inside the white dashed rectangle insad.
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to trap nanobelts on the pair of electrodes. In the first one, a
solution containing the nanobelts was spun on a wafer that
contained a large number of densely packed membrane struc-
tures. When nanobelts were uniformly deposited on the wa-
fer from the solution, it was found that nanobelts were often
adsorbed between the two closely spaced Pt electrodes while
no nanobelts were left bridging the long SiNx beams far apart
from each other. To increase the assembly yield, we have
investigated an electric field-directed assembly method. In
this method, the two Pt electrodes in the microdevice were
connected to an ac voltage source. As a solution containing
the nanobelts was dispersed on the wafer surface, the fre-
quency of the ac field was adjusted to generate an attractive
force on the nanobelts that were polarized in the electric
field. This phenomenon is called positive dielectrophoresis,
where a polarizable particle in a nonuniform ac electric field
is attracted to regions of high field strength.7 The attractive
or positive dielectrophoretic force can be used to align and
trap a nanobelt onto the two Pt electrodes. We found that the
suitable frequency and root-mean-squaresrmsd amplitude of
the ac voltage were about 1 MHz and 5 V, respectively, for
trapping the nanobelt. Similar methods have been reported
for trapping nanotubes8 and nanowires9,10 with a yield ap-
proaching 100%. In our experiments, usually several nearly
parallel nanobelts were trapped between two adjacent elec-
trodes.

We have tested the device shown in Fig. 1 that had only
one nanobelt trapped between the two Pt electrodes. We used
a focused ion beamsFIBd method to deposit a thin Pt coating
on the contact location between the nanobelt and each Pt
electrode so as to improve the electrical contact. The sensor
was mounted in a small flow-through chamber and tested
with NO2 and DMMP gases diluted in air.

Figure 2 shows the response of the nanobelt sensor to
0.2–10 ppm NO2 gas balanced with air while the nanobelt
was heated to 200 °C by the microheater. Current change in
the nanobelt was clearly observed when the NO2 concentra-
tion was as low as 200 ppb. The sensitivity can potentially be
improved with the optimization of the heater temperature
and with the doping of the nanobelt with catalytic additives
to increase its electrical conductivity and enhance redox
reactions.3

This single nanobelt provides a model system for us to
investigate the sensor poisoning effect. We found that the
current through the nanobelt recovered fully quickly after the
NO2 gas was shut off and the flow-through chamber was
purged with room air. The recovery was much faster than
that of the bunch of nanobelts tested in the earlier work. It
took less than 3 min, which could be the time required for

completely purging NO2 out of the flow-through chamber,
for the single nanobelt sensor to be refreshed. On the other
hand, the bunch of nanobelts in the earlier work was not
completely refreshed 40 min after the NO2 gas was shut off.

The faster recovery observed in the nanobelt is due to
the absence of grain boundaries or interfaces along the single
nanobelt of a single-crystal structure. In fact, we found that
the Pt coating deposited on the two nanobelt-electrode con-
tact locations by the FIB method was critical for eliminating
the sensor poisoning effect. Without this contact treatment, it
was observed that even a sensor consisting of just a single
nanobelt could be poisoned, i.e., the current could not re-
cover fully after the NO2 gas was shut off. With the contact
treatment, on the other hand, this poisoning effect was com-
pletely eliminated, suggesting that the single-crystal nanobelt
itself was not poisoned but a poor contact between the nano-
belt and the Pt electrode could still be poisoned. This finding
suggests that the slow recovery observed in the bunch of
nanobelts tested in the earlier work was due to poisoning
either at the poor contacts between the nanobelts and the
electrodes or at the interfaces between connecting nanobelts
in the bunch of nanobelts. The elimination of such poisoning
is essential, as it allows for high sensor stability and repeat-
ability, the lack of which has prevented the wide use of metal
oxide sensors.

It was recently reported that gas sensors based on heated
carbon nanotubesCNTd films were highly sensitive but
showed sensor poisoning.11 Such poisoning was likely due to
the presence of a large amount of junctions between inter-
connected CNTs in the CNT film. Although the CNT film
sensor could be refreshed upon ultravioletsUVd exposure12

or with the use of a gate voltage,11 these interventions should
be avoided in an automated sensor instrument for continuous
monitoring.

We have also tested another as-assembled nanobelt sen-
sor consisting of a single nanobelt with diluted DMMP gas
obtained from a permeation tube containing liquid phase of
DMMP. Figure 3 shows the sensor response to DMMP gas
balanced with air when the device was Joule-heated to
500 °C. The current through the nanobelt increased for about
5% and 3%, respectively, in respond to the 78 and 53 ppb
DMMP diluted in air. This sensitivity can potentially be en-
hanced to sub-ppb level by doping the nanobelt with CaO, a
catalytic additive for increasing the sensitivity of metal oxide
sensors for DMMP detection.13 In this regard, an ion implan-
tation method has been developed to dope metal oxide nano-
belts with manganesesMnd to tune its electrical and mag-
netic properties.14 Most importantly, in contrast with thin
film metal oxide sensors for DMMP detection,15 the as-

FIG. 2. Response of the as-assembled nanobelt-MEMS sensor to 0.2, 0.5,
0.9, 1.7, and 10 ppm NO2 balanced with air when the nanobelt temperature
was 200 °C. The voltage applied to the nanobelt was 2 V.

FIG. 3. Response of the as-assembled nanobelt sensor to 78 and 53 ppb
DMMP balanced with air when the nanobelt temperature was 500 °C. The
voltage applied to the nanobelt was 1.5 V.
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assembled nanobelt sensor did not show any poisoning effect
upon exposure to DMMP and the current recovered quickly
as DMMP was shut off.

These experiments show that low-power, miniaturized
gas sensors can be fabricated by assembling “bottom-up”
synthesized metal oxide nanobelts with “top-down” fabri-
cated microelectromechanical systemssMEMSd devices. The
integration of the two fabrication methods could be a viable
approach for large-scale manufacturing of well-organized
sensor arrays based on different nanostructures, e.g.,
CNTs,16,17 Si nanowires18 and metal oxide nanobelts, with
the complex functionalityssuch as integrated thermal con-
trold comparable to that of MEMS sensors. It has recently
been shown that large-scale vertically aligned metal oxide
nanowire arrays can be grown from patterned catalyst.19 Fu-
ture advancements in directed growth and directed assembly
of nanostructures on MEMS20 will likely allow for the fab-
rication of selective gas sensor arrays consisting of function-
alized metal oxide nanobelts integrated with a MEMS plat-
form that consists of a microchromatography column and
preconcentrator for gas separation and preconcentration. Al-
ternatively, the selectivity can also be obtained with the use
of a pattern recognition approach, where an array of sensors
made of different metal oxides with different catalytic addi-
tives generates a distinct response pattern for a gas species or
mixture.
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