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Abstract
We report a simple fabrication, great performance and cost-effective triboelectric nano-
generator (TENG), which is based on the cycled contact-separation between a polydimethylsil-
oxane (PDMS) film and a polyethylene terephthalate (PET) film, for effectively harvesting
footfall energy. The elastic sponge is first used as the spacer in the TENG, where the size and
the thickness of the spacers have a significant effect on the output performance of the TENG.
By using the optimized device, a TENG-based shoe insole is used to harvest human walking
energy, where the maximum output voltage and current density reached up to 220 V and 40 mA,
respectively. We also demonstrate that the fabricated shoe insole using a single layer of TENG
can be directly used to light up 30 white light-emitting diodes (LEDs) in serial connection.
By taking the merits of this simple fabrication, outstanding performance, robust characteristic
and low-cost technology, we believe that TENG can open up great opportunities not only for
powering small electronics, but also can contribute to large-scale energy harvesting through
engineering design.
& 2013 Elsevier Ltd. All rights reserved.
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Introduction

Harvesting energy, such as light [1], heat [2,3] and vibration [4],
from our ambient environment, has been an active subject
since the beginning of this century [5] due to the drastically
increasing needs in world energy. In recent years, with the
increase of the wireless electronic devices, like implantable
sensors, environmental/industrial monitoring device or long
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range asset tracking system, developing long-life, sustainable
and yet maintenance-free energy sources is essentially neces-
sary [6,7]. With the abundant amount of mechanical energy
found in our living surroundings such as human walking energy
up to 67 W [8], numerous emerging technologies have been
developed to convert green mechanical energy/vibration to
electricity for driving practical and functional devices [9–18]. In
2012, our research group has developed a triboelectric nano-
generator (TENG) technology to harvest the irregular mechan-
ical energy [19–23]. The mechanism of the TENG is based on the
electron flow as driven by the triboelectric effect induced
electrostatic charges on the surfaces of two different tribo-
electric materials [21]. Currently, some attempts about the
applications of the TENG have been demonstrated such as the
electrodeposition (PED) [21], driving the commercial cell phone
and wireless sensor [22,23], and degradation of methyl orange
[24]. However, there is no any report on the TENG-based shoe
insole, which has potential commercial applications for harvest-
ing human walking energy, so that the cell phone battery can be
charged while walking.

Usually, the fabricated TENG includes two layers of
triboelectric materials and spacer between them. The out-
put of the TENG is based on the contact and separation
between the two triboelectric materials to induce the
charge generation and separation processes. The spacer
plays an important role in separation process of the two
materials. Till now, although some kinds of spacers were
used to fabricate the TENG [21,24], there is no any report
about the effect of the spacers on the output performance
of the TENG. These investigations are very crucial for
choosing the optimized structure of TENG. Here, in this
paper, we focus on the optimization of the TENG in terms of
the spacer, including fabric, number, area coverage and
thickness. Moreover, through ubiquitous human walking
energy, which is prevalent anywhere at any time, we
designed an optimized TENG-based shoe insole, which can
be used to instantaneously light up 30 commercial white
LEDs connected in series. We believe this technology can
not only efficiently harvest ubiquitous walking energy, but
also open up new possibilities in waste mechanical energy
recycling toward a large-scale power system in the near
future.
Experimental section

A. Fabrication of the TENG

The fabrication process starts off with a layer of patterned
polydimethylsiloxane (PDMS) film. The elastomer and the
cross-linker (Sylgard 184, Dow Corning) were mixed in a 10:1
ratio (w/w). After degassing under vacuum for 2 h, the
mixture was spun-coated on the plastic mold with patterned
concave dome at 500 rpm for 100 s. Then the PDMS and
mold were put in a conventional oven (Yamato Scientific
America, Inc. DKN402) to cure at 85 1C for 3 h. After peeling
off the patterned PDMS with convex dome-shaped bump on
the surface from the plastic mold, a nearly 400 μm thick
PDMS layer was sat on top of the copper sheet as the bottom
electrode. Another polymer layer, polyethylene terephtha-
late (PET) film with a thickness of 127 mm, was deposited
with a 300 nm-thick indium tin oxide (ITO) as the top
Please cite this article as: T.-C. Hou, et al., Triboelectric nanogener
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electrode. A layer of spacers were inserted in between
the PDMS and PET film layers to sustain the device.
The spacer layer was chosen from the different fabrics,
area size and thickness detailed in the following discussion
in order to obtain the maximum electrical output. Finally,
silver paste was applied to connect the top/bottom elec-
trode to the copper conducting wires.
B. Fabrication and electrical measurement of the
shoe insole

The fabricated shoe insole was based on the most optimized
conditions of spacers. We scaled up the original TENG to a
shoe size with 27 cm in length and 9 cm in width. Besides,
we affixed the enlarged TENG with two cloths at the bottom
and atop.

The TENG was connected to the measurement system to
detect the output signals. SR560 and SR570 low noise
current amplifiers (Stanford Research Systems) were used
to acquire voltage/current signals, respectively. A mechan-
ical linear motor (Labworks Inc.) was employed to apply a
loading force to the TENG.
Results and discussion

The design of the TENG device is based on optimizing the
best spacer condition between two triboelectric films.
Fig. 1a is a schematic diagram of the fabricated TENG.
The PET (top layer) and PDMS (bottom layer) materials were
used to induce the triboelectric charges. The PET film was
coated with an ITO film with a thickness of 300 nm as the
top electrode, and patterned PDMS was put on top of a Cu
sheet. In order to sustain these two polymers and make the
charge generation and separation processes effectively,
numerous pieces of spacers were inserted between these
two triboelectric films. To simplify the fabrication process,
we only put 5 pieces of spacers as a model unit in the TENG,
as shown in Figure 1b. The area of TENG is 4.5 cm� 4.5 cm
and each spacer is 1 cm� 1 cm in size.

In order to obtain the highest output performance of the
TENG, three types of materials as the spacers were used to
fabricate the devices. Figure 2a, b and c are sports socks
(80% cotton mixed with 10% acrylic and 10% nylon), T-shirt
(100% cotton), and sponge (polyurethane), respectively.
Those three items are all easily obtained in daily life.
The corresponding output performance (short-circuit cur-
rent density and open-circuit voltage) are displayed in
Figure 2. We can find that the sponge spacer-based TENG
has the best performance among the three materials as the
spacer. The corresponding current density can reach
0.06 mA/cm2 and the voltage is nearly 28 V as compared
with the TENG with sports socks spacers, which has less than
0.02 mΑ/cm2 and 7 V for the output current density and
voltage, respectively. In this study, all the measurements of
the fabricated TENGs were tested by switching the pola-
rities to verify that the measured signals were generated by
the TENGs rather than the measurement system (supporting
information, see Figure S1). Taking sponge case as an
example, when the TENG was reversely connected to the
measurement system, the output current density also shows
ator built inside shoe insole for harvesting walking energy, Nano
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Figure 1 Structure of the fabricated TENG. (a) Illustration diagram of the TENG with dome-shaped bumps on micrometer scale
shown in the inset. (b) Image of a working TENG device with the spacers, elastic sponge in this case, in between the two polymer
layers.

1 cm1 cm 1 cm

Figure 2 Comparison of the electrical output performance (short-circuit current density and open-circuit voltage) of TENG
inserted in different kinds of fabric as spacer when subjecting to a cyclic force. (a) Sports socks, which consist of 80% cotton,
10% acrylic and 10% nylon, used as spacer. (b) T-shirt, which is 100% cotton, used as spacer. (c) Elastic sponge, or polyurethane, used
as spacer. All the data shown in this figure were obtained from the same TENG except replacing the spacers.
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a reversed value of 0.06 mA/cm2 (Figure S1b), indicating
that the signals are from the TENG itself.

We also investigated the effect of the number of spacers
on the output performance of the TENG. Figure 3 shows the
effect of the number of spacers from 5 to 40 on the electricity
generation, where the device used here has the same spacer-
Please cite this article as: T.-C. Hou, et al., Triboelectric nanogener
Energy (2013), http://dx.doi.org/10.1016/j.nanoen.2013.03.001
coverage area. The result (Figure 3f) reveals that both current
density and voltage decrease with increasing the number of
spacers, which is associated with the smaller effective contact
charging area when the number of spacers increases.
To further explore how the fabricated spacers affect the
output performance of TENG, we investigate the effect of
ator built inside shoe insole for harvesting walking energy, Nano
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Figure 3 Number of spacer dependence while keeping all the open area the same. Number of spacer is (a) 5, (b) 10, (c) 20, (d) 30,
(e) 40 and (e) Corresponding short-circuit current density and open-circuit voltage with different number of spacer. All the data
shown in this figure were obtained from the same TENG except replacing the spacers.

Figure 4 Influence of the area coverage and thickness of spacers on output characteristics of TENG. (a) The number of spacer at
each corner is 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. The scale bars represent 1 cm. (b) Output signal at different area coverage of
spacers. (c) Output signal with spacers in thickness 0 (without any spacer)-7 mm. All the data shown in this figure were obtained
from the same TENG except replacing the spacers.
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spacer coverage area on the output performance of the
device. Figure 4a shows the optical images of the TENGs with
the different spacer coverage area ratio from 1% to 50%. The
corresponding output electricity is summarized in Figure 4b.
The maximum current density is found under the coverage
area ratio of about 10%, and the maximum voltage can reach
up to 125 V at the coverage area ratio of 5%. Based on the
maximum output current condition with the coverage area
ratio of 10%, we then explored the optimized condition by
varying the thickness of the spacers. The results suggest that
both the maximum current density and voltage peak have the
highest values of 0.8 mA/cm2 and 135 V at the thickness of
1cm

Figure 5 A TENG-based shoe insole as a direct power source for ha
connection. (a) Image of a shoe insole composed of TENG inside.
generated by the shoe insole. (d) The voltage and current density
dependence of instantaneous electrical power from the shoe insole
(g) while stepping on top of the shoe insole.

Please cite this article as: T.-C. Hou, et al., Triboelectric nanogener
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spacers of 3 mm, respectively. The open-circuit output voltage
Voc of TENG [21,24] can be approximately expressed as

VOCðTENGÞ ¼
sd
ε0

: ð1Þ

where s is the triboelectric charge density on the surface, d is
the interlayer distance, which is the thickness of the spacer in
this case, and ε0 is the vacuum permittivity. According to the
Eq. (1), the output voltage Voc will increase with increasing
the interlayer distance d (the thickness of the spacer).
However, we found that the output voltage Voc decreases
with increasing the thickness of the spacer higher than 3 mm.
rvesting human walking energy to drive 30 white LEDs in serial
(b) The corresponding output voltage and (c) current density
as a function of the load resistance. (e) The load resistance

. (f) Snapshots of 30 white LEDs connected in series before and
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This is possibly because that when the thickness of the spacer
is larger than 3 mm, the contact between the PDMS and PET
films is not effective, and the effect becomes more obvious
with increasing the thickness of the spacer.

Since the mechanical energy existing in the environment
is always irregular and alters in frequency, we characterized
the output current density of TENG at different working
frequencies from 4 to 8 Hz shown in Figure S2. The curve
clearly reveals an increasing trend with the increase of the
frequencies, because the strain rate increases with the
straining frequency, which results in a higher current, but
the total amount of induced charges is constant under the
same circumstance except for driving frequency [22].

The object of the development of NG is to power
electronic devices by harvesting mechanical energy sur-
rounded in our living environment. In this regard, we have
fabricated a shoe insole based on the optimized spacer
condition discussed above. Figure 5a displays an optical
image of the fabricated shoe insole. The output perfor-
mance of the shoe insole has been investigated while
stepping on top of this fabricated device. Figure 5b and c
shows the corresponding short-circuit voltage and open-
circuit current density, respectively. It can be seen that the
voltage and the current density can reach up to 220 V and
0.8 mA/cm2, respectively. In practical use, the output power
for the load depends on the resistance of the load itself.
Therefore, we characterize the external load matching with
the working TENG-based shoe insole by changing the resistor
from 103–108 Ω. As shown in Figure 5d, the current decreases
with an increase of load resistance owing to the ohmic loss;
however, the voltage across the load goes up when the
resistance becomes lager. The instantaneous maximum power
value is nearly 1.4 mW shown in Figure 5e. This finding also
indicates that the TENG-based shoe insole runs most efficiently
if the load has a resistance of several MΩ.

The instantaneous electrical output of the TENG-based
shoe insole can simultaneously light up 30 white LEDs (3.0–
3.4 V, 24 mA max, 27,000 mcd) connected in series success-
fully (Figure S3 shows the experimental setup, where the
TENG-based shoed insole is connected to a rectifier and a
string of white LEDs). Figure 5f and g are the pictures of
LEDs taken before and while stepping on the shoe insole
directly. Video I (see the supporting information) records
these 30 commercial white LEDs driven by human walking
energy in a real-time manner. Moreover, with the benefits
like this, TENG-based shoe insole is expected to use the high
voltage for stimulating nerves (such as foot massage) and
other medical purposes.

Supplementary material related to this article can be
found online at http://dx.doi.org/10.1016/j.nanoen.2013.
03.001.
Summary and conclusions

In summary, we have fabricated a TENG based on the
contact-separation between a PDMS film and a PET film
using the triboelectric effect. Through optimizing condi-
tions of spacers such as number, area size and thickness,
a TENG with 4.5� 4.5 cm2 in size can generate up to
0.8 mΑ/cm2 and 135 V, respectively. Furthermore, the
TENG-based shoe insole is first fabricated, which can be
Please cite this article as: T.-C. Hou, et al., Triboelectric nanogener
Energy (2013), http://dx.doi.org/10.1016/j.nanoen.2013.03.001
used to harvest the walking energy. We demonstrate that it
can be used to light up 30 white LEDs connected in series
simply with human stepping force. By means of this simple
fabrication, high electrical performance, robust characteristic
and low-cost technique, we believe that TENG can open up
great opportunities not only for powering up small electronics,
but also potentially large-scale energy harvesting.
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