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Self-powered system that is interface-free is greatly desired for area-scalable application. Here we 
report a self-powered electroluminescent system that consists of a triboelectric generator (TEG) 
and a thin-film electroluminescent (TFEL) lamp. The TEG provides high-voltage alternating electric 
output, which fits in well with the needs of the TFEL lamp. Induced charges pumped onto the lamp 
by the TEG generate an electric field that is sufficient to excite luminescence without an electrical 
interface circuit. Through rational serial connection of multiple TFEL lamps, effective and area-
scalable luminescence is realized. It is demonstrated that multiple types of TEGs are applicable to 
the self-powered system, indicating that the system can make use of diverse mechanical sources 
and thus has potentially broad applications in illumination, display, entertainment, indication, 
surveillance and many others.

Though today’s electronics have evolved to be more sophisticated than ever before, they still rely on 
power sources that maintain their operation. Self-powered technology provides a viable perpetual power 
solution by harvesting ambient energy of other forms. It has taken on a tremendous application prospect 
in portable, wearable and implantable devices as well as in stand-alone and remote electronics1–5. The 
overall efficiency of a self-powered system depends on not only the conversion efficiency of the energy 
harvester but also on how much energy can be actually extracted and then delivered to the load6. In this 
regard, an electrical interface must be added to regulate the electric output of the energy harvester so that 
the load matching can be achieved to optimize the useful output power7–9. For example, photovoltaics 
and thermoelectric generators normally require boosters that enhance their very low voltage to make 
them practically useful10–12. As another example, the recently developed triboelectric generator (TEG) 
that harvests mechanical energy features extremely high voltage but limited current13,14. When driving 
conventional electronics that need low voltage but high current, the TEG can only deliver a fraction of 
its optimum output power15, which is a major problem for practical applications of this technology. As 
a result, an electrical interface that includes voltage transformers is required to promote the current at 
the expense of the voltage13. However, it is highly desirable to remove the interface not only because the 
interface itself has a power consumption that further reduces the overall efficiency but also because the 
extra interface adds considerably additional size, weight and cost to the system.

Here, this work presents a self-powered electroluminescent system that is interface-free and 
area-scalable. The system takes full advantage of the high voltage of the TEG by directly connecting it to 
an alternating-current thin-film electroluminescent (ACTFEL) lamp. Induced charges pumped onto the 
lamp by the TEG can easily provide an electric field that is sufficient to excite luminescence because the 
ACTFEL lamp is voltage-driven instead of current-driven16. Since both of the two components own a 
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capacitor-like structure that has infinitely large resistance, load matching is achieved without an electri-
cal interface. Through rational serial connection of multiple ACTFEL lamps, effective and area-scalable 
luminescence is realized. It is demonstrated that multiple types of TEGs that can harvest energy from 
diverse mechanical sources are applicable to the self-powered system, indicating potentially broad appli-
cations of the self-powered system in illumination, display, indication, surveillance and many others.

Results
The architecture of the self-powered system is illustrated in Fig. 1. It consists of two components, a TEG 
and an ACTFEL lamp. Here two types of TEGs are employed. They represent the two basic operating 
modes of the TEG17. The square-shaped TEG shown in Fig.  1a relies on the contact mode (Detailed 
fabrication process is provided in Methods), in which reciprocating pressing force perpendicular to the 
device results in pulsed electric output voltage and current. The detailed electricity-generating process 
was described in previous reports18. The disc-shaped TEG pictured in Fig. 1b has a stator-rotator struc-
ture, which belongs to the category of the sliding mode (Detailed fabrication process is provided in 
Methods). Continuous relative rotation between the stator and the rotator produces regularly alternating 
output current13. The stacked structure of the ACTFEL lamp is diagramed in Fig. 1c. On a glass substrate, 
four layers are fabricated in sequence, including an ITO electrode layer, a phosphor layer, a dielectric 
layer and a silver back electrode layer. The details of the structure are revealed in the SEM cross-sectional 
view (Fig. 1d,e). Complete fabrication process of the ACTFEL lamp is provided in Methods.

The nature of the electricity generation of the TEG is alternating flow of induced charges17. When 
two electrodes of a TEG and those of an ACTFEL lamp are connected respectively regardless of polar-
ity, induced charges pumped by the TEG onto the ACTFEL lamp can form a fast-changing electric 
field within the phosphor layer, which accelerates electrons in the phosphor and excites luminescence19. 
On one hand, the TEG features alternating high voltage. On the other hand, the ACTFEL lamp is 
voltage-driven. Therefore, the output characteristics of the power source matches well with the need of 
the load, which enables an interface-free self-powered system.

Before connecting to an ACTFEL lamp, a contact TEG (3 cm by 3 cm), when triggered by repeated 
reciprocating mechanical impact, could generate an open-circuit voltage of 125 V (left column in Fig. 2a). 
In short-circuit condition, the pulsed current has amplitude of 3.7 μ A (left column in Fig. 2b), which car-
ries induced charges of 65 nC for each peak as measured by an electrometer (left column in Fig. 2c). After 
an ACTFEL lamp (1.5 cm by 1.5 cm) was used as a load, the voltage actually applied onto the ACTFEL 
lamp has the same shape of square wave (right column in Fig.  2a) as that of the open-circuit voltage. 
The reason for the apparently reduced amplitude in Fig.  2a is because the voltage across the ACTFEL 
lamp is determined by the capacitance of the lamp, which is different from that of the TEG. The current 
(right column in Fig. 2b) and induced charges (right column in Fig. 2c) that flow through the ACTFEL 
lamp have slightly dropped amplitude compared to those in the short-circuit condition. This is because 
the capacitor-structured ACTFEL lamp poses a capacitive reactance and produces opposition to the 
current flow across the lamp. The induced charges pumped onto the ACTFEL lamp by the TEG exert a 
sufficiently high electric field that can excite transient luminescence of the blue-green phosphor20–22, as 
demonstrated in Fig. 2d.

The rotary TEG (10 cm in diameter) shown in Fig.  1b produces continuous alternating current as 
its two components have relative rotation13. The open-circuit voltage, short-circuit current and induced 

Figure 1. Architecture of the self-powered electroluminescent system. (a) Picture of the contact TEG. (b) 
Picture of the rotary TEG. (c) Schematic diagram of the ACTFEL lamp. (d) SEM picture of the cross-section 
of the lamp. (e) Enlarged view of the SEM picture that magnifies the ITO electrode layer.
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Figure 2. Electrical measurement results of the self-powered system when driven by two different kinds 
of TEGs. (a) Open-circuit voltage of the contact TEG (left column) and voltage applied onto the lamp (right 
column). Current (b) and induced charges (c) of the contact TEG in short-circuit condition (left columns) 
and those flowing through the lamp (right columns). (d) Picture of the electroluminescence by the contact 
TEG (permission is granted from the logo copyright holder). (e) Open-circuit voltage of the rotary TEG 
(left column) and voltage applied onto the lamp (right column). Current (f) and induced charges (g) of the 
rotary TEG in short-circuit condition (left columns) and those flowing through the lamp (right columns). 
(h) Picture of the electroluminescence by the rotary TEG (permission is granted from the logo copyright 
holder).
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charges at a rotation rate of 500 r/min are displayed in the left columns in Fig. 2e–g, respectively. When 
an ACTFEL lamp (3 cm by 3 cm) is introduced to form a system, the voltage also significantly drops 
(right column in Fig. 2e). The constantly changing current from the TEG can pass through the load. It 
is noticed that the current amplitude (right column in Fig. 2f) and the induced charges (right column 
in Fig. 2g) are only slightly smaller than those in the short-circuit condition, which is in contrast to the 
case of the contact TEG. This deviation is originated from the different current frequency provided by the 
two types of TEGs. The time span of a current peak produced by the rotary TEG is derived to be 2.5 ms, 
while a single current peak resulting from the contact TEG is found to be 35 ms (Fig. S1). Therefore, 
the higher current frequency from the rotary TEG (250 Hz) leads to smaller capacitive reactance in the 
AC circuit and thus less reduced current amplitude. Driven by the rotary TEG, the ACTFEL lamp emits 
continuous luminescence, as shown in Fig. 2h and Supporting Movie S1.

Discussion
Factors that may influence the luminescence intensity of the self-powered system were investigated by 
using the rotary TEG. First, the current frequency determines the luminescence intensity to a large extent. 
As shown in Fig. 3a, higher frequency leads to higher output of the luminescence, which is attributed to 
the faster-changing electric field that can accelerate electrons in the phosphor to a larger extent23. Since 
the current frequency is controlled by the rotation rate of the TEG, the input from external mechanical 
energy then plays a critical role in affecting the luminescence intensity. Second, the open-circuit voltage 
of the TEG is another important governing factor in that higher voltage means more induced charges 
pumped onto the ACTFEL lamp and thus higher electric filed for exciting the photon emission24. As 
the open-circuit voltage increases from 100 V to 300 V, the luminescence intensity experiences a 25-fold 
enhancement, as demonstrated in Fig. 3b. Third, when multiple ACTFEL lamps (1 cm by 1 cm) are used 
as a load simultaneously, the way they are connected can also considerable influence the luminescence 
intensity. If parallel connection is employed, the intensity drops exponentially as more lamps are added. 
Compared to the case of a single lamp, only 2.2% of the luminescence intensity can be obtained when 
five lamps of the same size are connected in parallel (Fig. 3c). On the contrary, serial connection is much 

Figure 3. Measurement results of electroluminescence spectrum of the system when driven by 
the rotary TEG. (a) Normalized intensity of the electroluminescence spectrum at different driving 
frequencies. Inset: peak normalized intensity as a function of the frequency. (b) Normalized intensity of the 
electroluminescence spectrum at different driving voltages. Inset: peak normalized intensity as a function 
of the voltage. Normalized intensity of the electroluminescence spectrum when multiple lamps in parallel 
connection. (c) and in serial connection (d) are used. Insets: peak normalized intensity as a function of the 
number of lamps.
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more favorable for light output of the self-powered system. As shown in Fig. 3d, as much as 18.3% of the 
luminescence intensity can be still preserved even when five ACTFEL lamps are used.

The above contradiction is attributed to different electrical characteristics of the connection methods. 
To illustrate this point, electrical measurement was performed on three ACTFEL lamps of the same 
size (3 cm by 3 cm) that were driven by a rotary TEG. The voltage applied onto each lamp for the serial 
connection is approximately three times of that for the parallel connection (Fig. 4a). The same result also 
applies to the cases of current (Fig. 4b) and induced charges (Fig. 4c). The detailed experimental values 
of the electrical measurement are tabulated in Supporting Table S1. Therefore, the serial connection 
provides a viable route in obtaining an area-scalable self-powered electroluminescent system. As demon-
strated in Fig. 5, a contact TEG of 12 cm by 15 cm was directly connected to six ACTFEL lamps (3 cm by 
5 cm) that were in serial connection. When triggered by footsteps, all of the lamps were excited simul-
taneously, which was clearly visible even in ambient light (Fig. 5 and Supporting Movie S2). The overall 
luminescent area reaches approximately 90 cm2. The demonstration reveals potentially wide applications 
of the self-powered system in areas such as illumination, display, indication, monitoring and surveillance.

In summary, we present a self-powered electroluminescent system without an electrical interface. 
The capacitor-structured ACTFEL lamp can take full advantage of the alternating high voltage from the 
TEG. Induced charges pumped by the TEG onto the ACTFEL can produce a fast-changing electric field 
across the phosphor layer to excite luminescence. Multiple types of TEGs are demonstrated as an effec-
tive power source for the system, showing the capability of the system in harnessing diverse mechanical 

Figure 4. Electrical measurement results on a single ACTFEL lamp when an array of three lamps is 
used with different connection methods. (a) Voltage applied onto a lamp that is in parallel (left column) 
and in serial (right column) connection with others. Current (b) and induced charges (c) that flow through 
a lamp when it is in parallel (left column) and in serial (right column) connection with others. Note: lamps 
are driven by the rotary TEG at a rotation rate of 500 r/min.
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sources. Rational serial connection of the ACTFELs enables area-scalable operation of the system, which 
promises wide applications.

Methods
Fabrication process of a contact-mode TEG. A contact-mode TEG is composed of two parts con-
nected by elastic braces. Each part has a substrate, a back electrode and an electrification layer. (1) cut 
two pieces of acrylic glass with dimensions of 3 cm by 3 cm by 0.2 cm using laser cutter to serve as 
substrates; (2) prepare Teflon and nylon films with a uniform thickness of 30 um into 3 cm by 3 cm as a 
pair of electrification layers; (3) deposit a copper layer of 100 nm in thickness on one side of Teflon and 
nylon films by magnetron sputtering as back electrodes; (4) adhere Teflon and nylon films separately 
onto the substrates with the uncoated side upward; (5) connect a lead wire to each of the electrodes for 
measurement; (6) attach two pieces of polyimide films with dimensions of 3 cm by 3 cm by 0.125 cm to 
the substrates at opposite edges as elastic braces.

Fabrication process of a rotary TEG. A rotary TEG is mainly composed a stator and a rotator. 
Stator: (1) manufacture a copper coated epoxy glass disc with a radius of 75 mm into two complemen-
tary patterns as separated electrodes; (2) two lead wires were separately connected to the independent 
electrodes for measurement; (3) adhere a layer of polytetrafluoroethylene (PTFE) film with a thickness 
of 30 um as an electrification layer. Rotator: (1) prepare a copper coated epoxy glass disc with a radius 
of 75 mm into 90 radially-arrayed sectors with designed pattern.

Fabrication process of the ACTFEL lamps. (1) apply scotch tape along the two opposite edges of 
a square-shaped glass deposited with an ITO layer; (2) apply the phosphor paste, dielectric paste and 
silver paste (provided by vendors) in sequence using a spatula; thin them by scraping a single slide across 
the layer; (3) dry and cure each layer before application of the next. Each layer is dried in an oven at 
130 °C for 15 minutes; (4) small pieces of copper tape are attached to the ITO layer and the silver layer 
separately as two electrodes.
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