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A B S T R A C T

Driver behavior is important for traffic safety and status monitoring. Major parameters in driving behavioral
analysis are generally acquired by utilizing some mirror or sensitive but expensive sensors, such as eye tracker,
electroencephalograph, etc. Here, we report for the first time a pressure-sensitive, flexible and robust tribo-
electric nanogenerator (TENG) consisting of Al foil and Kapton materials as a cost-effective sensing device for
self-powered driver behavior monitoring. The sensitivity of TENG was evaluated preliminarily by detecting its
open-circuit voltage signal in responding to externally enforced perturbation. A real-time monitoring system is
demonstrated with TENGs, data-collecting unit and a driving simulator. A preliminary assessment of the real-
time collected data demonstrates that the self-powered sensor is feasible for monitoring a driver's behavior. This
work provides a promising strategy for monitoring driver's behavior and will extend TENG-based sensors for
practical applications in vehicles as well as aeronautical and space technologies.

1. Introduction

Road traffic injuries (RITs) are reported to be the eighth-leading
cause of death across the world [1]. Poor driver behavior, especially
driver distraction, is believed to be directly responsible for the traffic
accidents. The National Highway Traffic Safety Administration
(NHTSA) made a thorough evaluation by conducting the 100-car Nat-
uralistic Driving Study [2], and indicated that driver inattention was a
factor of 78% crashes/near crashes, and most of the inattention phe-
nomena are related to driver distraction. Actually, the primary task of
driving only takes about 46% of total time in vehicle [3], the rest of the
time is taken up by secondary tasks, for example, texting, navigating or
adjusting radio channels. However, these kinds of activities require
drivers to deviate their eyes from the road, which is extremely ha-
zardous that the risk of crashing increases three times if the eyes-off-
road-time exceeds 2 s [3,4]. The analysis of drivers’ driving behaviors

could be used in many fields, such as researches on traffic safety [5–8],
researches on traffic flow [9,10]. Thus, driver monitoring is of great
importance and has been a research focus.

Bright pupil effect based on near-infrared (IR) illuminators is a
widely-used approach to monitor driver behavior [11,12]. For example,
DD850 Driver Fatigue Monitor (DFM) provides a real-time measure-
ment of eye position and eyelid closure to detect drowsiness [13]. This
system is based on a single camera which takes two pictures, one bright-
pupil image and one dark-pupil image using IR illumination sources
with different wavelength. And the two images are processed further to
produce a third image in which drivers’ eyes are identified, and the key
point of this image is to enhance the bright eyes and exclude all image
features except for the bright pupil [14]. In despite of the effectiveness
and simplicity of this bright pupil method, several factors impose ne-
gative influences on the application such as sunlight, eyeglasses as well
as brightness and size of pupils. This method uses an infrared light
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source to illuminate the human eye and form a bright spot on the
cornea. The center of the bright spot and center of the pupil would
make up a vector, which has a corresponding relationship with the eye
gaze point. Then we can find the position of the eye point of view
through this vector, sunlight, eyeglasses as well as brightness; and size
of pupils will definitely have a bad influence on the formation of bright
spot. Nonetheless, systems based on bright pupil effect are the most
common in industry. Several auto companies have designed such sys-
tems to observe drivers’ drowsiness and distraction. Other auto com-
panies also attempt to monitor driver distraction by observing eye
movements. Moreover, this system provides a wide field of view that
enables analysis of naturalistic behavior, thus it has been extensively
employed in simulators and applied in some inattention systems
[15–17]. However, the stereo-based systems exploiting infrared light
source are too expensive especially considering mass production. An-
other widely used method, named magnetic fields based search coil, has
many disadvantages over TENG sensing method. It holds a larger area
in participants’ face. The mapping structure from waveforms to states of
eyes might be more complicated, robustness of this method might be
weak. Overall, the existing products are not very sensitive to blinking
which is also an important parameter to detect driver drowsiness. So
far, bright pupil approach is widely accepted while the effectiveness
could be easily impaired by some external factors.

Triboelectric nanogenerators (TENGs) are a newly developed en-
ergy-harvesting devices that can convert various forms of mechanical
energy, ranging from human motion, wind power to ocean waves into
electric power by coupling between the contact-electrification effect
and electrostatic induction effect [18,19]. It has been developed to
harvest these energy used to power electric appliances, including LED
light activation and personal wearable electronics [20,21]. Moreover,

TENG can be applied to various self-powered sensing units for en-
vironmental monitoring and pollution treatment [22–26], medical
service [27,28], health monitoring [29–31], positioning sensors
[32,33], and other fields [34,35]. In particular, utilization of the TENG
as a self-powered pressure sensing component, is being intensively ex-
plored because the TENG generates electrical signals based on tribo-
electric charges induced by physical contact and electrostatic induction
resulting from external mechanical excitations like touch or contact
collision [36]. To date, various TENG-based sensors with different
configurations have been fabricated. Table S1 (Supporting information)
summarizes TENG-based sensors and their applications reported re-
cently.

Herein, self-powered TENG-based sensor composed of Kapton and
Al foil is introduced for the first time to monitor driver's behavior with a
driving simulator, which is of high sensitivity, high stability and low
cost compared with the traditional near-infrared illustrator.
Importantly, this sensor is capable of capturing eye blink motion with a
super-high signal level (~750mV) and enables real-time measurement.
Furthermore, the driver's behavior is well correlated with the collected
signals. This work paves a way to explore highly sensitive TENG sensors
for monitoring drivers’ behavior in various vehicles and improving the
traffic safety.

2. Experimental section

2.1. Fabrication of flexible TENGs

Two types of TENG sensors with sizes of 3×3 cm and 1.5×3 cm
were fabricated with the same Al foil and Kapton. The thicknesses of Al
foil and Kapton are 15 µm and 25 µm, respectively. The thickness of the

Fig. 1. (a) The electricity signal generation process of TENG. The direction of arrow in (a) represents the direction of electron flow. (b) Short-circuit current of the
TENG generated at different test frequencies. (c) Open-circuit voltage of the TENG at different test frequencies. (d) The calculated electric potential distributions
corresponding to III，IV, V and VI in (a), respectively.
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TENG is about 4mm due to a space between the electrodes.

2.1.1. Characterization and measurement
The output voltage and current of TENG were measured by a

Keithley 6514 system electrometer. The open-circuit voltage signals of
the driving simulation were acquired with a multichannel data-acqui-
sition equipment (Cdaq-9171 and NI 9239). Static driving simulator
with UC Win/Road environmental design is used to record virtual
driving in BIT.

3. Results and discussion

TENG was fabricated with Kapton and Al foil as two contact layers,
as shown in I of Fig. 1a. The Al foil adhered to sponge at the corner
works as one electrode to contact the front and back Kapton films, then
another two Al foils stuck on the side of Kapton are used to transfer
charge generated on the surface of the Kapton films. By virtue of the
sponge adhered to the corner of Al foil in the center, and the ability of
elastic Kapton film to recovery, so the TENG exhibits good contact-se-
paration capability. The electricity signal of TENG is generated due to
the coupling effect of contact electrification and electrostatic induction
during contact-separation operation on the TENG [37]. Fig. 1a shows a
cycle of electron flow process from the friction layers to an external
load. To start, no charge is generated between the electrodes without
externally applied force (II in Fig. 1a). When Al foil and Kapton are
contacted with each other, charge transfer occurs at the interface due to
their different electron affinities, resulting in positive charges at the Al
foil surface and negative charges at the Kapton surface, respectively (III
in Fig. 1a). Then, the separation motion induces a potential drop be-
tween the dielectric layers, which drives the electrons to transfer from
Al on Kapton side to Al in the center (IV in Fig. 1a). The electrons will
stop moving until the gap distance between the contact layers reaches
the maximum and an electrical equilibrium achieves (V in Fig. 1a).
When the active layers are approaching again, electrons will flow from
Al electrode in the center to the Al on Kapton side (VI in Fig. 1a) to form
an electrostatic equilibrium [38]. The cyclic generation of potential
difference between the contact triboelectric electrodes is numerically
simulated with a COMSOL Multiphysics software, which shows the
electric potential distribution during the contact-separation process
corresponding to III, IV, V and VI in (a) respectively, as shown in
Fig. 1d. It can be seen that the potential difference between the two
layers gradually becomes lower as Kapton electrode moves away from
Al foil, but it increases with approaching each other. Therefore, the
electricity is generated during potential difference changing.

The electric output of the TENG with a size of 3×3 cm was mea-
sured at different frequencies, from 0.5 Hz to 2.0 Hz, as shown in Fig. 1b
and c. The short-circuit current (Isc) basically increases with the

increase of frequency at an open-circuit condition, from 0.5 μA at 0.5 Hz
to 1.2 μA at 2.0 Hz. But the open-circuit voltage (Voc) almost remains
the same peak value of about 14 V. It is generally assumed that a higher
flow rate of charges occurs with the increase of deformation frequency,
giving rise to a higher response current. Since the value of Voc is only
determined by the triboelectric charge density and the separation dis-
tance between the contact layers, little change at different frequencies
is thus observed [39]. As one of energy conversion devices, TENG is
primarily applied to harvest mechanical energy in the environment, and
coupled with some electronic devices, such as LEDs, batteries, super-
capacitors, to assemble them into a self-powered system [40–42].
Moreover, TENG can be a sensor with high sensitivity due to the pulsed
signal (Isc or Voc) generated by itself in response to external mechanical
forces applied on it. So it is possible to get the feedback of the intensity
and frequency of the force applied on TENG real time by transmitting
and collecting the electric signal.

The sensitivity of the fabricated TENG with Al foil and Kapton was
examined by a series of tests, including sound vibrations and different
movement behaviors, as shown in Fig. 2. When one says a word, like
“Hi”, “Very”, “Good” or “Very good”, the TENG stuck on his/her throat
will be subject to bending and deformation under the induction of vocal
chords vibrating. Simultaneously, different pronunciation can be re-
corded with the characteristic voltage signal generated by the TENG,
which indicates that the TENG served as a self-powered sensor has good
sensitivity and reliability (Fig. 2a). Similarly, different movements are
monitored by this TENG sensor as one perform some actions or apply
pressure on it, as shown in Fig. 2b. For example, it is easy to judge one
drop or a few consecutive drops of water falling on the TENG.

In this work, this Al-Kapton based TENG was also used as a self-
powered sensor for monitoring the driver's behavior in automobiles for
the first time. The monitoring system is consisting of TENGs as sensors,
data-acquisition unit and a driving simulator, which is schematically
illustrated in Fig. 3a. A photograph in Fig. S1 shows the real testing
process. First, two TENG sensors are mounted on the accelerator and
brake of a driving simulator, respectively. One side of another TENG
sensor is contacted with the corner of driver's eye while the other side of
this sensor is adhered to the driver's glasses frame. Then all the three
sensors are linked to a multichannel data-acquisition device, which is
connected with a laptop. During the testing process, a driver attentively
watches a driving simulated scene in a projection screen when the
virtual car is started. The driver can perform various driving behaviors
when he is facing complex traffic road conditions, e.g. pressing the
accelerator, braking or poor concentration. It is vital to analyze these
driving performances in the vehicle test field.

Fig. 3b displays a single-channel blinking signal in the simulation. In
general, an unaffected eye blink action of one person lasts about
0.2–0.4 s on average, experiencing a short blink-release process, as

Fig. 2. (a) The sensing signal response to different speaking voice. (b) The sensing signal response to different movements.
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shown in Fig. 3c. At the same time, the motion and frequency of
blinking are accurately recorded by a voltage signal. During the driving
process, driver's eye blinking information can be used for distraction
detection, fatigue warning, drunken state detection, etc [43,44]. Video
S1 shows the blinking movement can be real-time monitored. Similarly,
the braking motion from a driver can be transmitted and reflected by
touching the TENG in one motion because the TENG devices generally
show press-sensor characteristics (Fig. 3d and video S2). Driver inten-
tion can be detected by the actions on brake and gas pedal [45,46],
which can be used for implement of some sub-systems of ADAS such as
Autonomous Emergency Braking (AEB) and Emergency Alert System
(EAS) [47].

Supplementary material related to this article can be found online at
doi:10.1016/j.nanoen.2018.07.026.

The simultaneous three-channel data-acquisition results are shown
in the Fig. 4. Two TENG sensors with a size of 3×3 cm were used to

collect the signals of “pressing the accelerator”, “braking” motions,
while “blinking” signal from the driver is acquired by a TENG with a
size of 1.5× 3 cm, as shown in Fig. 4b and c. Fig. 4a displays three
voltage signals with a cut-off of 98 s, and a part of the corresponding
driving motions and simulated scenes were recorded in video S3 and
S4. Drivers would experience virtual driving with the driving simulator.
Common traffic scenes including highway driving, signalized and un-
signalized intersections were created. Percentage of Eyelid Closure
Over the Pupil Over Time (PERCLOS) was the ocular closure degree in
unit time. Eye blinking frequency was numbers of blinks in unit time.
They can be obtained from the TENG signals through simple algorithm
and used to identify the state of drivers. A longer PERCLOS may result
from drivers’ drowsiness. A higher eye blinking frequency may result
from discomfort of drivers’ eyes. Type of pedal action (fast/slow) and
duration time can be easily extracted from the TENG signals, which can
be used in the process of identifying acceleration/deceleration

Fig. 3. (a) Schematic illustration of self-powered triboelectric sensors for driver behavior monitoring. (b) The voltage signals from blinking and (c) The corresponding
enlarged curves of the area marked in (b). (d) The voltage signals from braking process and the photograph showing braking (inset); (e) The corresponding enlarged
curve.
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attentions of drivers. Bad driving behaviors including impulse or
drowsiness driving could be monitored. Sound and light warning can be
implemented according to the TENG signals. Although the real road
conditions are more complex than the simulation cases, the present
results provide a feasible strategy for analyzing the drivers’ behaviors. It
can also be extended to real-time monitoring other driving behavior in
various vehicles and aeronautical and space fields. This work also sheds
light on the clues for constructing an intelligent traffic network (Fig.
S2).

Supplementary material related to this article can be found online at
doi:10.1016/j.nanoen.2018.07.026.

4. Conclusions

In summary, a facile TENG-based pressure sensor was realized by
utilizing the contact triboelectrification between an Al foil and two
Kapton film materials. The working mechanism and the output per-
formance of the TENGs were studied. TENGs are effective pressure
sensors because of their sensitive response to external presses. For the
first time, we demonstrate the application of sensitive TENG-based
sensors in driving field by collecting and analyzing the Voc signals with
the assistance of multichannel data-acquisition device. The collected
data during braking, pressing the accelerator and even blinking are well
correlated with the driving behaviors, which is of vital importance for
traffic safety and intelligent driving. The TENG sensors may be ex-
tended to monitor other driving behaviors. This work opens up new
avenue for designing intelligent traffic network by means of the cost-
effective pressure-sensing functionalities of TENGs.
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