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A B S T R A C T

Wearable electronic devices have attracted numerous attention in tactile sensing, motion detecting, and bio-
medical signal monitoring. In particular, a wearable and self-powered sensor combining all the merits of sen-
sitivity, transparency, stretchability, and flexibility is highly demanded to adapt human skins. Herein, we report
a fully transparent, highly stretchable, and self-powered contact-separation triboelectric nanogenerator (TENG)
as a tactile sensor. The TENG consists of a double-network ionogel with the transparency, stretchability, and
conductivity as the electrode and one friction layer, and patterned polydimethylsiloxane (PDMS) as another
friction layer. The fabricated sensor reaches a maximum sensitivity of 1.76 VN−1 when detecting impacting
forces in the range of 0.1–1 N. Meanwhile, with good stretchability of the sensor, the triboelectric signals
maintain a good linearity with impacting forces at different tensile ratios (0%, 10%, 50%, and 80% strain). These
properties enable the sensor to be capable of monitoring a variety of human activities, including finger touching
and bending, breathing, and pulse beating. We believe such a transparent, stretchable and self-powered tactile
TENG sensor has tremendous application potential in wearable and soft electronics.

1. Introduction

Wearable electronics [1] have begun to spring up in various con-
texts including transistors [2,3], strain sensors [4,5], energy storage
devices [6,7], and displays [8]. For strain sensors, the properties of
flexibility, stretchability and transparency are highly desired to adapt
human skins. The flexibility and stretchability of most strain sensors are
contributed from their active materials whose resistance could change
linearly with their dimensions. Several strategies have been developed
to realize the stretchability of the active materials. In particular, studies
have doped conductive fillers, such as Ag ink [9], carbon nanotube
(CNT) [10], metal nanofibers/nanowires [11–13], and carbon black
[14,15], into elastomer to form flexible electrodes [16–19]. However,
these flexible sensors suffer from poor transparency and stretchability

due to the inherent color and inelasticity of conductive fillers. Com-
parably, transparent elastic conductive hydrogels doping high-con-
centration ions gain better transparency and stretchability [20], but
dehydrated hydrogels become friable and opaque, losing their original
transparency and stretchability. Alternatively, some researchers have
adopted ionic liquids (ILs) as the active materials, but the liquid mass
may give rise to instability issues, as well as signal hysteresis due to the
channels encapsulating ILs [21–23]. More recently, Ding et al. have
reported the synthesis of a high performance ionogel by locking ILs into
binary cross-linked polymer networks, yielding improved mechanical
strength and conductivity [24].

Despite significant progress in stretchability and transparency,
however, wearable sensors still require external power supply to
function properly. Triboelectric nanogenerator (TENG) based sensors
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offer a promising solution for self-powered sensing. Based on the cou-
pling effect of triboelectrification and displacement current [25–27],
TENGs efficiently convert ambient mechanical energy into electricity.
Advantages of triboelectric devices include flexibility, lightweight im-
plementation, and versatility in material options, which are desirable
for wearable electronics [28–30]. Operating modes of TENGs are
commonly classified into four types: vertical contact-separation
[26,27], single-electrode [31,32], freestanding triboelectric-layer [33],
and contacting-sliding [34,35], as well as their derived structures
[36–38]. Even though stretchable and transparent TENGs based on
hydrogels have been developed, all of them have a single-electrode
structure [39–41]. So that triboelectric signals largely depend on the
contacting materials, limiting their applications. In addition, the
stretchable electrodes of those TENGs are conductive hydrogels formed
in aqueous electrolyte solutions, inevitably leading to dehydration of
the hydrogels and in turn, deterioration in ionic conductivity and me-
chanical elasticity [39–41].

Herein, we report a transparent and stretchable tactile sensor that is
self-powered by TENG with a contact-separation structure. We in-
corporate IL-locked ionogel as the electrode and one electrification
layer, which is coupled with another layer of patterned PDMS (molded
from vinyl record) for triboelectrification. The unique mechanical
properties of the ionogels and PDMS provide good stretchability and
transparency to the sensor. Moreover, owing to the nonvolatility of ILs,
the ionogel maintains a high ionic conductivity to ensure stable per-
formance of the sensor. Combining the self-powered TENG structure
with ionogels of high stretchability, transparency, and conductivity, the
reported sensor can be integrated in a broad range of applications of
wearable electronics.

2. Experimental section

2.1. Fabrication of the transparent self-powered sensor

The preparation of ionogel was conducted following our previous
report, and details were shown in Supporting Information [24]. Breifly,
liquid polydimethylsiloxane (PDMS, a 10:1 mixture of base and curing
agents, Dow Corning Sylgard 184) was spun onto a clean and smooth
surface of silicon wafer or vinyl record, and followed by spinning at
1000 rpmmin−1 for 15 s and 1500 rpmmin−1 for 60 s. A final 50 µm
thick smooth or patterned PDMS film were obtained after curing at
75 °C for 3 h. The TENG was encapsulated between two PDMS layers
and the edge was also sealed with PDMS. Between them, there are three
layers comprised with an ionogel film on the top, a patterned PDMS
film in the middle, and an ionogel film at the bottom. Two Al belts were
attached to the two ionogel films for electrical connection, respectively.

2.2. Characterization and measurement

The conductivity of the ionogel was obtained from a four-point
probe resistivity measurement system (Probes tech Co. Ltd., China).
Impulse force was provided by a linear motor (LinMot E1100) and its
magnitude was measured by a commercial force sensor (501F01, YMC
Piezotronics INC) mounted on the motion part of the linear motor. The
triboelectric output of the self-powered sensor was recorded by a
Keithley 6514 electrometer. The mechanical tensile tests were con-
ducted by an ESM301/Mark-10 system. The morphology of the vinyl
record and patterned PDMS film were characterized by a field emission
scanning electron microscope (Hitachi, SU-8020). The optical trans-
mittance was measured by a Shimadzu UV-3600 spectrometer.

3. Results and discussion

The transparent, stretchable, and TENG-based sensor had a

Fig. 1. Structure of the transparent and stretchable TENG-based tactile sensor. a) Layered structure of the sensor. b) SEM image of the patterned PDMS film with
protruding triangular stripes. c) Molecular structure of the ionogel network. d) Stress-strain curve of the TENG based sensor. e) Photographs of the TENG sensor at
original (left) and limiting length before breaking (right).

G. Zhao, et al. Nano Energy 59 (2019) 302–310

303



multilayered structure (Fig. 1a), in which two ionogel films sand-
wiching a patterned PDMS film were sealed between two smooth PDMS
films. PDMS is a common type of materials in biomedical applications
and wearable devices because of its transparency, stretchability, bio-
compatibility and chemical stability [42,43]. Moreover, its negativity in
triboelectric series makes it a preferred material of TENG electrification
layer [44]. Being similarly triboelectric negative as Teflon, PDMS is
more formable, biocompatible and transparent. As an electrification
layer of TENG, PDMS film has been intentionally manufactured with
topological structures on surface, such as pyramid [26], nanorod arrays
[29], and mesopores [30], to increase the friction area. To seek a facile
and cost-effective fabrication of PDMS topological structures, we took
advantage of the texture structure on a vinyl record's surface to mold a
PDMS film with protruding triangular stripes (60 µm wide and 25 µm
high) (Fig. 1b, Fig. S1). These protruding triangular stripes on the
surface of PDMS film also supported the upper ionogel layer, allowing
air gap to be preserved between these two triboelectric layers in the
contact-separation TENG.

The electrostatic interaction between the IL [i.e., 1-ethyl-3-methy-
limidazolium dicyanamide ([EMIm][DCA])] and a charged poly(2-ac-
rylamido-2-methyl-1-propanesulfonic acid) (PAMPS)-based double
network allowed us to fabricate a transparent ionogel with both high
ionic conductivity (1.9 Sm−1 at 25 °C) and good mechanical strength
[24]. The upper ionogel layer (520 µm thick) functioned as the upper
electrode and an electrification layer, while the bottom ionogel film
(520 µm thick) acted as the back electrode of the patterned PDMS layer
to conduct induced charges. To record the output signal, aluminum (Al)
belts were attached to the ionogel films for electrical conduction. The
whole TENG device was encapsulated by PDMS films that are 56 µm in
thickness, giving a final film structure with a rectangular dimension of
2× 1.5 cm and thickness less than 1.2 mm.

Attributed to the highly stretchable and transparent PDMS and io-
nogel, the as-fabricated TENG exhibited excellent transparency and
stretchability. From the stress-strain curve of the TENG obtained by
uniaxial tensile test, the device had an ultimate stress of 170 kPa at a
stretch of 125% strain (Fig. 1d–e). Several cliff falls after the limiting
strain were also noticeable in the stress-strain curve, possibly due to

stratified fracture of the whole device induced by relative sliding be-
tween the layers and mismatch in their elastic modulus. In fact, the
onset of fracture in the ionogel layer at the ultimate strain already
suggested the damage and failure of the sensor. Therefore, the fol-
lowing drops in the stress-strain curve only indicted fracture of the
other layers and relative motion among those layers. For comparison,
the ionogel film had an ultimate stress of 125 kPa at a strain of 121%,
while the patterned and smooth PDMS broke down at 122% and 129%
strain under 1.7 MPa and 1.5MPa, respectively (Fig. S2). These values
suggested the TENG sensor was first damaged with the fracture of io-
nogel layer, and then completely failed with the fracture of PDMS films,
in consistent with the observation (Fig. S3). In daily life, human epi-
dermal skin is rarely exposed to tension over 100%, allowing the skin-
like and ionogel-based sensor to be adapted to stretchable human skin.

The ionogel and smooth PDMS films both achieved a transmittance
over 90%, while the transmittance of the molded PDMS film slightly
decreased to 85% because of the stripe structure induced refraction
(Fig. 2a). Altogether, the 1.2-mm-thick sensor possessed an average
transmittance of 83% in the visible light range (400–800 nm wave-
length). Despite slightly weakened transmittance, the multilayered
structure still allowed vivid image seen through the sensor (Fig. 2a
insets).

As a transparent and stretchable electrode, the ionogel film had a
favorable conductivity of 1.9 Sm−1 (Fig. 2b), contributed from the high
ionic conductivity of [EMIm][DCA]. More importantly, the good elec-
trical conductivity was not affected by the stress and deformation of the
ionogels in practical use. To demonstrate this, the ionogel-based film as
a piece of wire was connected with one end of the light-emitting diode
(LED) to form a complete circuit with a 5 V direct current voltage
source. The conductivity of the ionogel varied between 1.7 Sm−1 and
2.4 Sm−1 during stretching and releasing [24]. The brightness of the
LED did not change visibly after elongating the ionogel (Fig. 2c-d) or
during the reciprocating stretch of the ionogel film (Movie S1). This
observation indicated a stable resistance of ionogel films against de-
formation, as a desired property of electrode materials in TENG.

Supplementary material related to this article can be found online at
doi:10.1016/j.nanoen.2019.02.054.

Fig. 2. Transparency and conductivity
of the ionogel-based TENG sensor. a)
Transmittance of ionogel-based sensor,
PDMS film, ionogel film and molded
PDMS film in the visible light range.
Inset, a sample image seen through the
sensor (left, red dashed line indicates
the device) and open air (right). b)
Average conductivity of the un-
stretched ionogel film. The error bar
represents the conductivity variations
from ten ionogel samples. The con-
ductivity of the ionogel film, indicated
by the brightness of the LED, did not
change observablly before c) and after
d) stretching. The inset shows the test
circuit.
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The working principle of the transparent TENG sensor is based on
triboelectrification and electrostatic induction (Fig. 3a). Initially,
without pressure on the device, the upper ionogel layer is supported by
the tips of the protruding triangular stripes on the patterned PDMS film,
and thus separated from the PDMS layer (Fig. 3a, i). When a pressure is
imposed, the ionogel layer receives a completely adaptive deformation
with the patterned PDMS layer because of their elastic deformation.
This is the contacting state (Fig. 3a, ii), in which triboelectrification
occurs at the PDMS/ionogel interface. To balance the potential, an
equivalent number of positive ions accumulate on the surface of the
upper ionogel layer. Later when the pressure is released, the deforma-
tion of the two elastomer films would disappear (Fig. 3a, iii). As two
surfaces are separating away, positive ions in the bottom ionogel film
migrate to balance the static charges on the surface of PDMS.

Meanwhile, a transient flow of charges from the Al connecting tape to
the upper ionogel layer generates a current pulse. Finally, when the
upper ionogel layer and the PDMS layer recover their initial positions,
positive ions on the upper ionogel electrode are completely screened,
leaving an equivalent amount of positive ions on the bottom ionogel
electrode (Fig. 3a, iv). If pressure is applied on the sensor again, the
upper ionogel layer would approach the PDMS layer and the polarity of
the electric potential difference would be reversed. In consequence,
electrons would flow in the opposite direction (i.e., from the upper
ionogel layer to the bottom electrode, Fig. 3a, v). With repeated con-
tact-separation movements between the upper ionogel and patterned
PDMS films, an alternative current would be generated.

During detection, a cylinder with a Φ 11.5 mm smooth flat end (the
stress surface) was pressed on the top surface of the sensor, giving the

Fig. 3. Working principle and characteristic output of the ionogel-based TENG sensor. a) A complete cycle of the working TENG. b) The open-circuit voltage and c)
short-circuit current of the unstretched sensor induced by 0.1 N impulsive force at 1 Hz. The triboelectric Voc of the unstretched sensor under different magnitudes of
impulsive force at d) 1 Hz and e) 2 Hz.
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forcing punch a circular contact area (Φ=11.5mm). The pressure in-
tensity was about 962.75 Pa with a 0.1 N impulse force. Without being
stretched, the TENG sensor outputted a 0.3 V open-circuit voltage (Voc)
and 2.3 nA short-circuit triboelectric current (Isc), respectively, under a
0.1 N impulse pressure at the frequency of 1 Hz (Fig. 3b-c).

Strain-resistance elastomer sensor indicated a close correlation be-
tween the hysteresis performance in strain-resistance responses and
characteristic relaxation of resistance due to elastomer's viscoelasticity
[23]. Thanks to the contact-separation structure of the TENG sensor,
the deformation of the upper ionogel layer was completely driven by
the external force, whereas the electrostatic potentials of the ionogel
and PDMS layer largely depended on the distance between the two
layers. Therefore, the 514ms response time corresponded to about one
compression stroke from the external force at 1 Hz. Similarly, if the
frequency of impulsive force was increased to 2 Hz, the response time of
the triboelectricity output dropped to 260ms, corresponding to one
compression stroke in 0.25 s (Fig. S4). In addition, the response time of
the sensor kept stable at higher impulsive force. A compression stroke
took 543ms and 552ms under 0.6 N and 1 N at 1 Hz, as shown in Fig.
S5 a-b, respectively.

Fig. 3d shows the triboelectric Voc of the unstretched sensor under
different pressure at 1 Hz. The Voc of the TENG was 0.3 V, 0.35 V, 0.4 V,

0.5 V, 0.57 V, and 0.65 V under the pressure of 0.1 N, 0.2 N, 0.4 N,
0.6 N, 0.8 N and 1 N, respectively. Clearly, the triboelectric output of
the unstretched sensor increased with larger magnitude of pressure
applied at the frequency of 1 Hz. With the impulse frequency main-
tained at 2 Hz, the triboelectric Voc output of the unstretched sensor
increased linearly from 0.3 V to 0.72 V with pressure rising from 0.1 N
to 1 N (Fig. 3e). This result suggested that unstretched sensor could also
sensitively detect different magnitudes of impacting forces at 2 Hz.
Meanwhile, small magnitude of impulsive forces (0.1 N in Fig. S6a and
0.2 N in Fig. S6b) at different frequencies (1–8 Hz) yielded similar tri-
boelectric output (Voc). With the contact area being the same, the si-
milar output of Voc from these cases suggested a fast flow of external
electrons to reach equilibrium in the short time of a contact-separation
cycle [26,45].

In addition, we characterized the performance of the sensor when
subject to different stretching lengths. Under a 10% elongation driven
by a small magnitude of impulsive forces (Fig. S6c-d), triboelectric
signals of the sensor were sensitive to the frequency of the impulsive
forces. Raising the impulsive frequency of 0.1 N pressure from 1Hz to
8 Hz yielded a 5- fold increase in triboelectric output (from 0.55 V to
2.8 V). Likewise, the triboelectric output increased from 1 V to 1.38 V as
the frequency of a 0.2 N impacting force increased from 1Hz to 8 Hz.

Fig. 4. Triboelectric output (Voc) of the TENG sensor. Voc of the a) 10%, b) 50% and c) 80% strained sensor under different magnitudes of the impulsive force at 1 Hz.
d) Voc of the sensor at different ratios of tension under different force at 1 Hz. e) Voc of the 50% strained sensor under 1 Hz 0.4 N impulsive force over 6000 cycles.
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We speculated that, a 10% strain would increase the contacting area, so
that the open-circuit voltages were also increased with higher fre-
quency of impacting forces to reach a new equilibrium state. Further-
more, the triboelectric output of a 10% strained TENG increased with
stronger impacting force at 1 Hz (Fig. 4a). This correlation was also
preserved at a higher impulsive frequency (2 Hz) despite with a weaker
trend (Fig. S7).

We further compared the triboelectric output of the ionogel based
sensor under a 50% strain driven by forces of different magnitudes and
at different impulsive frequencies. Upon the impacting force of 0.1 N,
Voc was 1.15 V under 1 Hz and maintained at ~1.3 V when the im-
pulsive frequency increased from 2Hz to 8 Hz (Fig. S8 a). Under the
0.2 N pressure, however, Voc continuously rose when the frequency of
impacting forces increased from 1Hz to 8 Hz (Fig. S8 b). Regarding the
frequency of the impacting forces, we focused on the frequencies below
2Hz since human skins are rarely subject to vibration frequencies
higher than 2 Hz. Within the frequency range, we found a good linear
correlation between the triboelectric signal and magnitude of the force.
At the 50% strain, Voc increased from 1.2 V to 2.8 V as the 1 Hz

impulsive force increased from 0.1 N to 1 N (Fig. 4b). When the same
strain was induced by a 2 Hz impulsive force, Voc was also linearly
correlated with the magnitude of the pressure, rising from 1.28 V to
3.3 V when the force increasing from 0.1 N to 1 N (Fig. S9). Under an
80% strain, triboelectric signals of the sensor still manifested changes in
the magnitude of impulsive forces at 1 Hz (Figs. 4c) and 2 Hz (Fig. S10).
The relationship between the triboelectric signals and the magnitude of
impulsive forces at 1 Hz at different stretch ratios are summarized in
Fig. 4d. Most importantly, at all the stretching ratios, triboelectric
signals clearly increased with increased forces. Finally, because in real
applications the strain sensor may subject to impulsive forces over a
long period, we also investigated the service life and stability of the self-
powered sensor. The 50% strained sensor maintained stable output of
triboelectric signals over 6000 cycles driven by a 0.4 N impulsive
pressure at 1 Hz (Fig. 4e). It proved that the stretchable sensor could
satisfy basic demands of sensing applications.

Having characterized the triboelectrical output of the sensor in-
duced by different pressure, we further quantified the sensitivity of the
force sensor using the following equation:

Fig. 5. Self-powered sensor could detect multiple types of motion. The triboelectric signal (Voc or Isc) of the sensor generated by a) stretching, b) twisting, c) touching,
d) finger bending when the sensor was attached on a finger joint, e) airflow blown onto the sensor, and f) human pulse beats.
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Where GF is gauge factor and Voc is the open-circuit voltage induced by
applied pressure F on the ionogel sensor. The GF value of the trans-
parent TENG sensor was 0.39, 0.86, 1.76 and 1.46 VN−1 at the original
sensor length, 10%, 50% and 80% strain, respectively (Table S1). As a
stretchable self-powered force sensor, unstretched sensor had the best
linearity, followed by the 50% strained one. In addition, the sensitivity
increased with the increasing tensile ratio and reached plateau
(1.76 VN−1) at the 50% strain. The higher sensitivity and triboelectric
signals with increased tensile ratio could be attributed to the increased
contact area and shrinking effect of the thickness, simultaneously. The
thickness of ionogel and PDMS layer would shrink with the increasing
tensile ratio, and thus the displacement between contact surfaces would
increase. As a contact-separation TENG sensor, its triboelectric output
would increase with increasing displacement.

Being sensitive to pressure and deformation as well as capable of
biomedical energy-electricity conversion, the designed TENG device
could be applied as a multifunctional wearable sensor to detect multiple
types of human motions (Fig. 5). Horizontal stretching of the device
yielded weak fluctuation in Voc (~25mV) (Fig. 5a), which was arised
from the slight contact between two triboelectric layers by stretching-
releasing reciprocating motion of the sensor. Upon twisted, the sensor
outputted Voc with a parallel positive and negative waveform in one
cycle with a peak value of 0.1 V (Fig. 5b). In the both cases, even
though no normal pressure existed, squeezing and contacting between
the patterned PDMS and the ionogel layer occurred during re-
ciprocating twisting.

With high tactile sensitivity, the TENG sensor could detect finger
touching (Fig. 5c and Movie S2), where the touching strength was re-
flected by the magnitude of the triboelectric Voc. Detection of finger
bending was realized when the self-powered TENG sensor was attached
on the finger joint (Fig. 5d and Movie S3). Furthermore, the sensor
could not only detect direct contacting pressure but also the pressure of
airflow. When an airflow was blowed near the sensor surface, the
strength of induced triboelectric signal reached to the highest 0.18 V
(Fig. 5e).

Supplementary material related to this article can be found online at
doi:10.1016/j.nanoen.2019.02.054.

The self-powered sensor could also detect pulse beating when at-
tached on wrist. The triboelectric Isc curves of the sensor caused by
pulse beating is shown in Fig. 5f. Compared with touching and con-
tacting, throbbing of human skin caused by pulse beating was relatively
feeble. The triboelectric Isc of the ionogel sensor reached 8 pA and three
Isc peaks took ~2.3 s (Fig. 5f inset). The measured pulse beats of the
self-powered sensor were consistent with the volunteer's actual pulse of
78 beats min−1 (measured by a commercial OMRON® HEM-7211
sphygmomanometer). The above results demonstrated the excellent
performance of the transparent, stretchable, and self-powered TENG
sensor for pressure and tactile sensing in wearable electronics.

4. Conclusions

In summary, we have fabricated a transparent and stretchable
TENG-based tactile sensor. The TENG structure of the sensor consists of
a double network ionogel as its flexible electrode and one triboelec-
trification layer, and a patterned PDMS layer with dihedral stripes
structure as the other triboelectrification layer. The contact-separation
motion between the layers of patterned PDMS and highly-conductive
ionogel is induced by external impulsive force, which could output
stable triboelectric voltage or current for sensing. This sensor has high
transparency (83%), good stretchability (121%), and good sensitivity to
pressure (0.39–1.46 V·N−1) in the range of 0.1–1 N at different tensile
ratios (0%~80%). We demonstrate biomedical applications of this self-
powered sensor by detecting touching forces of different magnitudes,

finger bending, human breathing, and pulse beating. With combined
transparency, stretchability, and sensitivity, the self-powered skin-like
sensor shows great potential in future applications of wearable sensing
electronics.
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