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A B S T R A C T   

Mechanoluminescence (ML) has promising applications such as stress sensors and many other fields, which raises 
intensive research attention and enthusiasms in the past few decades. However, accurate characterizations of the 
ML process with high temporal and spectral resolution remain a considerable challenge for the current scientific 
community. Here, an advanced ML characterization system based on the dynamic diamond anvil cell (dDAC) is 
developed to achieve flexible modulations of ML performances. Upon compression, the ML spectra of manganese- 
doped zinc sulfide (ZnS:Mn) show a large red-shift (~45 nm) and a volcano-trend of the ML intensity, where the 
cumulative ML intensity is solely dependent on the pressure change. DFT calculations identify the coupling of 
Mn-doping and surface vacancies is playing a crucial role in contributing to the improvement of ML through the 
band offset. The suppression of the vacancies formation on the surface by the applied pressure over 4 GPa leads 
to the decreases of the ML intensity. This work provides a brand new ML color and intensity tuning strategy and 
offers a promising method to explore the ML mechanism.   

1. Introduction 

Mechanoluminescence (ML), one of the most interesting lumines-
cence phenomena, refers to the light emission through the mechanical 
stimuli, including rubbing, deforming, grinding, compressing, and 
cleaving, etc [1,2]. Compared with photoluminescence (PL) and elec-
troluminescence (EL), ML is a dynamic process that is highly related to 
time and space. Owing to the unique feature, ML materials are promising 
candidates in stress sensing [3–5], anti-counterfeiting [6,7], and novel 
light source and displays [8–11]. Under mechanical stress, the structure 
of ML materials undergoes various changes, including elastic deforma-
tion, plastic deformation, and subsequent crush. These enable the ap-
plications of ML for real-time and multidimensional mechanical sensing, 
which becomes highly significant for the safety detections in buildings 
and bridges [12–14]. To achieve the in situ monitoring of the 

mechanical stress change, it is highly urgent to discover efficient ML 
materials and sensitive characterization techniques to reveal the change 
of the external mechanical stress. ML are widely identified in materials. 
In particular, almost 50% of inorganic salts and organic compound 
solids have been found to exhibit ML [15] and new ML compounds are 
still emerging [16,17]. Among the large amounts of ML materials, 
manganese-doped zinc sulfide (ZnS:Mn) is one of the most efficient ones, 
which shows intense ML intensity and self-recovery capability for broad 
applications [18–25]. Although extensive research has been carried out, 
the high-pressure induced ML in ZnS:Mn is still very limited. Since 
pressure effectively modulates the properties of photoluminescent ma-
terials (e.g., intensity, color, and lifetime [26,27]), it should not only be 
considered as an “excitation source” for ML. The regulation of pressure 
on ML materials should be explored to understand its mechanism and 
expand its application. Therefore, it is challenging to find an effective 
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method to explore the in-depth underlying mechanism for pressure 
induced ML phenomenon. 

Various methods, such as drop tower [28,29], light-gas gun [30,31], 
universal testing machine [32,33], and atomic force microscopy (AFM) 
[34], have been designed to characterize ML based on the type of 
stimulation. For example, the drop tower and light-gas gun methods 
belong to impact-based approaches, in which the light-gas gun can 
provide larger kinetic energy than the drop tower. Meanwhile, the 
universal testing machine is commonly used to drive tension or 
compression to polymers embedded with ML material, and the AFM 
method can apply stress or friction to individual ML particles. Although 
these techniques are pivotal in promoting the ML research, it is still 
challenging to accurately and precisely characterize such a dynamic 
process with high resolution [35]. This is due to the weak intensity and 
transient nature of ML. To precisely control and characterize the pres-
sure, the diamond anvil cell (DAC) equipment is often introduced [36, 
37], which includes X-ray diffraction (XRD), fluorescence spectroscopy, 
Raman scattering, ultraviolet-visible (UV–vis) absorption, and infrared 
(IR) to supply the information on the pressure induced change in both 
electronic properties and lattice structures [38]. DAC usually consists of 
two parallel diamond anvils with a metal gasket hole to put the sample. 
As the distance between the two parallel diamond anvils becomes 
shorter, the sample will be subjected to high pressure. To further char-
acterize the versatile ML system with multiple compression modes (e.g., 
various compression waveforms, ranges, and rates), the combination 
with time-resolved detection (e.g., imaging and spectroscopy) is 
strongly desired for the further systematic investigation of the ML 
process. 

In this work, a new ML characterization system based on dynamic 
diamond anvil cell (dDAC) combined with time-resolved imaging and 
spectroscopy is developed to specifically determine the details of the 
whole ML process (Fig. 1). A systematic study of the ML process of ZnS: 
Mn has been carried out with this system. ZnS:Mn exhibited unique ML 
behavior, where an unexpected pressure-induced red-shift upon 
compression is noted in the ML spectra. Meanwhile, the ML intensity 
increased initially and then decreased with increasing pressure. Based 

on the experimental verification with multiple compression modes 
(various compression waveforms, ranges, and times), we confirm that 
cumulative ML intensity solely depended on pressure change. Through 
the theoretical calculations, the evident optimizations of the electronic 
structure by the introduction of surface vacancies have been confirmed. 
The original interlayer structure is also strongly affected by the co- 
existence of applied pressure and vacancies. The opposite influences of 
applied pressure and the vacancy result in the volcano trend of 
mechanoluminescence. Our work has proposed an advanced method for 
flexibly tuning the color and intensity of ML through the control of high 
pressure, which has supplied crucial references to the understanding of 
ML materials and the design of efficient ML materials in the future. 

2. Results and discussion 

The crystal structure, morphology, and elementary compositions of 
the as-synthesized ZnS:Mn particles were characterized by powder X-ray 
diffraction (PXRD), scanning electron microscopy (SEM), and energy 
dispersive spectrometry (EDS), as shown in Fig. S1. The corresponding 
results confirmed a single-phase wurtzite structure (PDF#36–1450) 
with a mean size level of 1.7 µm, and the Mn2+ dopants were uniformly 
distributed in the matrices. Fig. 2a schematically illustrates the new ML 
characterization system. An arbitrary function generator provides a 
customized waveform signal to three piezoelectric actuators to drive the 
dDAC and controls the synchronism between the pressure load and 
detection devices (details in the experimental section). The pressure is 
measured through the ruby pressure gauge [39], and time-resolved ML 
signals under dynamic pressure are collected by a fast, sensitive scien-
tific camera and a spectrometer. Four characteristic waveforms (α, β, 
ramp and sine) are designed to drive the dDAC, and the corresponding 
practical pressure loads are shown in Fig. 2b− e. 

The ZnS:Mn particles and silicone oil (pressure transmitting me-
dium) were sealed in dDAC at 1.1 GPa and compressed by waveform α to 
7.3 GPa within 1 s. Waveform α was set to provide a constant 
compression rate (6.2 GPa/s). The ML process was recorded using a 
camera at a rate of 20 frames per second. With increasing pressure, ZnS: 
Mn started to emit an orange ML, which gradually became brightened 
and eventually turned dark red. However, the ML intensity did not al-
ways increase but decayed upon further compression and faded rapidly 
after 1 s (Fig. 3a). The same result was quantitatively confirmed by 
spectroscopy, and the exposure time was 50 ms (Fig. 3b− d). No ML 
signal was detected when the pressure increased from 1.1 GPa to 
1.4 GPa, and ZnS:Mn first exhibited ML with a central wavelength of 
597 nm at 0.1 s (1.9 GPa). The ML emission enhanced and reached the 
maximum at approximately 0.35 s (3.3 GPa) when it was red-shifted to 
608 nm (Fig. 3b). When the pressure further increases to 3.6 GPa at 
0.4 s, the ML emission remains at the maximum level. Afterwards, the 
ML was red-shifted continuously, but the peak intensity decreased under 
further compression, indicating the turning point at 3.6 GPa (Fig. 3c). 
After 1 s, the pressure stayed at 7.3 GPa, and the peak positions of ML 
spectra remained at 642 nm, rapidly declined in intensity, and main-
tained its detectability until totally vanished at 1.5 s (Fig. 3d). 
Throughout the entire compression, the ML was linearly shifted from 
~597 nm to ~642 nm (Fig. 3e), and such a large red-shift in ML spectral 
was first observed, indicating that pressure can also tune the emission 
color of ML. The clear linear relationship between ML peak position and 
pressure suggests that ZnS:Mn is a pressure-dependent functional ma-
terial with potential applications in dynamic pressure sensors. 

The PL properties of ZnS:Mn under pressure have been investigated 
before [40,41], and the PL spectra also linearly red-shift under 
compression [41], which is the same as the ML spectra (Fig. S2). The 
main reason is that both ML and PL emissions of ZnS:Mn originate from 
the 4T1-6A1 transition of Mn2+ ions [42]. However, differing from ML 
intensity variation, the PL intensity shows a weak dependence on 
pressure [41]. In order to further reveal the ML process of ZnS:Mn, the 
variation of ML intensity was studied and the ML intensity here 

Fig. 1. The schematic diagram for the dDAC induced mechanoluminescence 
in ZnS. 
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represents the photon number (i.e., the peak area of ML spectrum). As 
plotted in Fig. 3f, the ML intensity under the above compression 
increased linearly first and then decreased gradually with a 
turning-point at ~3.6 GPa. The linear increase region of ML intensity 
has been reported before [19,22,43]. However, the subsequent reduc-
tion has not been observed until this work. 

Additionally, the ML features of ZnS:Mn upon decompression were 
also investigated. While unloading the pressure from 6.8 GPa to 4.0 GPa 
within 1 s, ZnS:Mn also showed ML, and the emission was blue-shifted 
continuously (Fig. S3), indicating that decompression could also stim-
ulate ML and modulate its color. Hence, the ML of ZnS:Mn is a dynamic 
physical process involving pressure change and absolute pressure level, 
which determines the intensity and color of ML. The variation of pres-
sure can be regarded as the “excitation source” of ML under either 
compression or decompression. In general, large pressure changes in 
unit time lead to bright ML emission, but the above results indicate that 
the ML intensity does not always grow with pressure. The ML color of 
ZnS:Mn can also be regulated by pressure and the peak position related 
to exact pressure. To gain an insight into the ML behavior of ZnS:Mn, a 
term of cumulative ML intensity (Ic) was used to define the sum of the 
whole ML intensity generated before certain pressure. The plot of Ic 
versus pressure for ZnS:Mn is presented in Fig. 3g, where Ic increased 
rapidly first and slowed down gradually over the turning-point of ML 
intensity mentioned above, which is well-fitted to the following theo-
retical equation [24]: 

Ic = A
(
1 − exp

(
− B(P − 1.1)2) )

, (1)  

where A and B represent the intrinsic constants of ZnS:Mn with values of 
A = 7.92 × 107 a. u. and B = 6.86 × 10− 2 GPa− 2. 

The influences of compression waveform, range, and time on the ML 
of ZnS:Mn were systematically investigated to further verify the rela-
tionship between Ic and pressure and the turning-point of ML intensity. 
For intuitional comparison, the normalized cumulative ML intensity was 
used in Fig. 4. In addition to waveform α, three other compression 
waveforms were designed (β, sine, and ramp), and their compression 
rates varied during compression. Through these waveforms, ZnS:Mn was 
compressed to ~8 GPa within 1 s (Figs. S4− S6) and a consistent rela-
tionship between Ic and pressure was obtained (Fig. 4a). Furthermore, 
ZnS:Mn was compressed from 1.1 GPa by ramp waveform to different 
pressure levels (1.9, 2.9, 4.0, 4.9, and 6.4 GPa) within 1 s (Fig. S7). In 
another group of experiments, ZnS:Mn was compressed to ~8 GPa under 
different compression times (0.1, 10, and 100 s) (Figs. S8− S10). As 
shown in Fig. 4b–c, a good agreement was found between the Ic versus 

pressure curves. These results indicate that the relationship among all Ic 
and pressure uniformly meets Eq. (1) despite under different compres-
sion processes. It should be noted that ML spectra were collected at a 
fixed exposure time, but the pressure changes were different in each 
spectrum collection time under different compression processes. Thus, it 
was impossible to directly observe the change of ML intensity with 
pressure. Fortunately, the pressure at the maximum tangent slope of the 
curve between Ic and pressure corresponds to the turning-point of ML 
intensity, so the turning-point of ML intensity under different 
compression processes should also at ~3.6 GPa. 

We have investigated the electronic properties of ZnS:Mn under high 
pressure to understand the luminescence performance. Although the 
overall concentration of Mn doping remains the same, we have inves-
tigated the influences caused by the Mn doping near the surface to the 
ML performance regarding the electronic structure changes with varied 
thicknesses. For the thin film thickness with a higher Mn concentration 
near the surface, we notice the 0.30 eV band offset of Mn-3d orbitals 
between 1 GPa and 4 GPa and limited change after the pressure of 4 GPa 
through the projected density of states (PDOS) (Fig. 5a). The alleviation 
of the bandgap benefits the electron transfer to enhance the lumines-
cence intensity. These results support a similar range of turning-point 
with the experiment. As the ZnS layer becomes thicker, such a down-
shifting of ZnS is still noticed. However, the scale of the downshifting is 
much weaker, which reduces to 0.15 eV. Similarly, the local electronic 
structure has remained similar after the external pressure reaches 4 GPa 
(Fig. 5b). When the Mn concentration further decreases, it is noted that 
the downshifting of the Mn-3d bands is absent from 1 GPa towards 
10 GPa (Fig. 5c), indicating the very limited change of the local elec-
tronic structure. These results demonstrate that a higher concentration 
of Mn doping leads to the higher sensitivity of the local electronic 
structure to the external pressure, which further modifies the lumines-
cence properties. Since anion vacancies are common defects on the 
surface of ZnS, we also carefully consider the effect of such defects on the 
electronic structure. For the higher concentration of Mn, the formation 
of S vacancy (VS) induces an evident shrink of the bandgap of 1.34 eV, 
which significantly facilitates the electron transfer from the valence 
band under external pressure. With the increases of external pressure, 
the bandgap increases and becomes stable, supporting the decrease of 
mechanoluminescence intensity under high external pressure over 
4 GPa (Fig. 5d). With VS formation near the surface Mn, the alleviation 
to the bandgap still preserves as the Mn concentration decreases. 
Meanwhile, the downshifting scale of Mn-3d decreases to 0.50 eV 
(Fig. 5e). These results confirm that the coupling between surface Mn 
and VS is the key to improve the luminescence performance. However, if 

Fig. 2. Schematic illustration of the ML characterization system and four typical compression curves. (a) Schematic diagram of the ML characterization system with 
four main components: (i) arbitrary function generator, (ii) dDAC (1 piezoelectric actuator, 2 conventional DAC), (iii) camera, (iv) spectrometer. Inset shows the 
schematic drawing of DAC. (b–e) Four waveforms (red line) output by an arbitrary function generator and black dots show the practical pressure change calibrated by 
the ruby pressure gauge. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article). 
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Fig. 3. ML features of ZnS:Mn compressed by waveform α from 1.1 GPa to 7.3 GPa within 1 s. (a) Time-resolved ML photographs and (b–d) time–resolved ML spectra 
of ZnS:Mn with an exposure time of 50 ms. Black arrows indicate the evolution of the ML spectra as a function of time. (e) Pressure-dependent peak position of the ML 
spectra of ZnS:Mn. (f) Pressure-dependent ML intensity. (g) Dependence of the cumulative ML intensity on pressure. 

Fig. 4. Dependence of the cumulative ML intensity on the pressure of ZnS:Mn under different compression modes. Dependence of the cumulative ML intensity on the 
pressure of ZnS:Mn, when (a) compressed from 1.1 GPa to ~8 GPa by different waveforms (α, β, sine and ramp) within 1 s, (b) compressed from 1.1 GPa by ramp 
waveform to different values of final pressure (1.9, 2.9, 4.0, 4.9, 6.4, and 7.6 GPa) within 1 s, and (c) compressed by ramp waveform with different compression times 
(0.1, 1, 10, and 100 s) from 1.1 GPa to ~8 GPa. The black solid curve shows the fit to the normalized cumulative ML intensity on pressure corresponding to Fig. 2f, 

and the formula is Ic = 1.00×
(

1 − exp
(
− 6.86 × 10− 2 × (P − 1.1)2

))
. 
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the Mn on the surface concentration is too low, the shifting phenomenon 
induced by VS and Mn-doping is buried by the low sensitivity of the 
surface. Even with the formation of VS, the PDOS has been completely 
pinned under different external pressure (Fig. 5f). The electronic struc-
ture investigation confirms the coupling of Mn-doping and VS is the key 

factor to reduce the bandgap to enhance electron transfer during the 
external stimuli. 

From the energetic perspective, the external pressure results in the 
stabilization of the surface structure of Mn-doped ZnS (Fig. 5g), which 
demonstrates the higher difficulties of defect formation. To further 

Fig. 5. DFT calculations of ZnS:Mn under external pressure. (a) The PDOSs of Mn-3d of high concentration under different external pressure. (b) The PDOSs of Mn-3d 
of medium concentration under different external pressure. (c) The PDOSs of Mn-3d of low concentration under different external pressure. (d) The PDOSs of Mn-3d 
near VS of high concentration under different external pressure. (e) The PDOSs of Mn-3d near VS of medium concentration under different external pressure. (f) The 
PDOSs near VS of Mn-3d of low concentration under different external pressure. (g) The correlation between stability and applied pressure. (h) The energetic mapping 
of the formation of VS on the surface under different applied pressures. (i) The energetic mapping of Mn doping near the surface under different applied pressures. (j) 
The interlayer variation of high concentration Mn-doped ZnS surface. (k) The interlayer variation of medium concentration Mn-doped ZnS surface. (l) The interlayer 
variation of low concentration Mn-doped ZnS surface. The solid and dash lines represent the interlayers distance from the top surface to the bottom in Mn-ZnS and 
Mn-ZnS with VS structures, respectively. 
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understand the influence of external pressure, we have also studied the 
correlation between the doping of Mn and the formation of VS. As the 
applied pressure becomes over 4 GPa, the energy cost of VS formation 
starts increasing for medium and high concentration of surface Mn 
doping, which remains stable or slightly decreases at further increasing 
applied pressure (Fig. 5h). Although the formation of VS in the low 
concentration of surface Mn doping structure, the limited contribution 
to the electronic structure leads to a subtle influence on the ML per-
formance. Therefore, these results indicate that reaching the sufficient 
VS concentration at high Mn doping near 4 GPa is essential to reach the 
optimal ML performances. Meanwhile, the formation of Mn-doping ex-
hibits an opposite trend. As the external pressure increases, a higher 
concentration of Mn doping at the surface faces higher energy costs. 
With the external pressure, the energy cost shows an overall decreasing 
trend with the valley point at 4 GPa (Fig. 5i). Moreover, we also reveal 
the structural change under external pressure. For the highest concen-
tration of Mn-doping, the interlayer distance distribution demonstrates a 
peak region between 4 and 7 GPa (Fig. 5j), indicating the largest 
induced polarization, which is beneficial for ML. The existence of VS 
leads to a tighter lattice structure when compared to Mn-doped ZnS. As 
the surface layer becomes thicker, the applied pressure causes the un-
even stress distribution on the surface layer, where two different trends 
of interlayer distance are noticed (Fig. 5k). When the Mn-doping con-
centration becomes further lower, we notice that the interlayers of the 
near bulk structure show limited change while the surface structure 
shows high sensitivity to the applied pressure, leading to the loss of the 
symmetry of the ZnS lattice (Fig. 5l). These results indicate that the 
coupling between surface Mn doping and VS significantly contributes to 
the increase of mechanoluminescence. Owing to the increases in the 
formation barrier of VS at high pressure, the optimal luminescence 
performance is achieved near 4 GPa with the appropriate concentration 
of Mn-doping. 

3. Conclusion 

In summary, a new ML characterization system based on dDAC was 
developed, and multiple compression modes (various compression 
waveforms, ranges, and times) combined with time-resolved imaging 
and spectroscopy were used to study the ML process of ZnS:Mn. The 
pressure-induced large red-shift of ML spectra was first observed, which 
is ascribed to the reduction of the gap between 4T1 and 6A1 of Mn2+ ions 
induced by the change of the external pressure. Most importantly, the 
turning-point (~ 3.6 GPa) of ML intensity upon compression and the 
sole dependence of cumulative ML on pressure change is revealed. DFT 
calculations have proved the induced band offset by the co-existence of 
Mn-doping and surface vacancies under pressure, which is the origin of 
improved luminescence performances. As the pressure increases, the 
formation of vacancies becomes more difficult, leading to reduced 
luminescence intensity under higher pressure. The in-depth reveal of the 
ML process of ZnS:Mn indicates that pressure is not only the “excitation 
source” of ML but also a significant tool to regulate the color and in-
tensity of ML, which is of great significance to further explore the ML 
mechanism of more materials and expand their applications in more 
promising areas. 

4. Methods 

4.1. Material synthesis 

ZnS:Mn particles were synthesized through solid state reaction as 
previously described [22]. Typically, 1.2 wt% MnCO3 (99.985%, Alfa 
Aesar) and 98.8 wt% ZnS (99.99%, Acros) powders were mixed and 
sintered at 1100 ◦C for 3 h under the protection of argon. 

4.2. Structural characterization 

Sample morphology and elementary compositions were character-
ized by field-emission scanning electron microscopy (SEM) (SU8020, 
Hitachi) equipped with energy dispersive X-Ray spectroscopy (EDX) 
(SDD2830–300D, IXRF). Powder X-ray diffraction (PXRD) patterns of 
the ZnS:Mn particles were collected by the X-ray diffractometer 
(Empyrean, PANalytical B.V.) with Cu-Kα radiation. 

4.3. ML Characterization 

Briefly, ZnS:Mn particles and a small ruby ball (pressure gauge) were 
loaded into a 300 µm-diameter hole in a T301 steel gasket (pre-indented 
to ~70 µm) on a 500 µm culet anvil. Silicone oil was used as the pressure 
transmitting medium. The pressure was determined using the ruby-scale 
method [39]. The dDAC apparatus could achieve a high-pressure load 
(up to 30 GPa) in a short time (less than 0.5 ms). Three piezoelectric 
actuators controlled by an arbitrary function generator (AFG-3051, 
GWINSTEK) applied load to a traditional diamond anvil cell, synchro-
nously. By modulating the output signal of the arbitrary function 
generator (e.g., magnitude, frequency, and waveform), it was possible to 
study the ML behaviors of the samples under various compression 
ranges, rates, and waveforms. The time-resolved ML micrographs of the 
samples were obtained by a fast, sensitive scientific camera (pco.edge 
5.5, 2560 × 2160 resolution, 100 frames/s) equipped on a microscope. 
An intensified charge-coupled device (ICCD) detector (Andor iStar, 
1024 × 1024 resolution) assembled with a spectrometer of 500 mm 
focal length (Andor Shamrock 500i, 150, 600, and 1200 gr/mm grating) 
allowed the collection of time-resolved ML spectra within short expo-
sure times (>100 μs). 

4.4. Calculation setup 

We have applied the density functional theory with Hubbard U 
parameter (DFT+U) calculations to investigate the electronic structure 
and energetic trend of Mn-doped ZnS through the CASTEP packages 
[44]. The generalized gradient approximation (GGA) and 
Perdew-Burke-Ernzerhof (PBE) are chosen to describe the 
exchange-correlation energy [45–47]. We have set the cutoff energy of 
the plane-wave basis set to be the ultrafine quality of 380 eV based on 
the ultrasoft pseudopotentials. Based on the 
Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm, the k-points 
used in this work are applied with the coarse quality for the energy 
minimization [48]. For all the valence states, we treated the (3d, 4s, 4p), 
(3s, 3p) and (2s, 2p) for Zn, S and O, respectively. In this work, we have 
considered three different surface structures for the ZnS:Mn, which are 
2, 3, and 4 layer-thickness, respectively. Mn has replaced the Zn atom on 
the surface while the S vacancy is constructed near the surface Mn. For 
all the models, a 20 Å vacuum space has been set in the z-axis to guar-
antee fully relaxation. To accomplish the geometry optimizations, the 
convergence test requires the total energy difference less than 5 × 10− 5 

eV per atom and the inter-ionic displacement as 0.005 Å per atom, 
respectively. 
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