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A B S T R A C T   

Sustainable monitoring of traffic using clean energy supply has always been a significant problem for engineers. 
In this study, we proposed a self-powered smart transportation infrastructure skin (SSTIS) as an innovative and 
bionic system for the traffic classification of a smart city. This system incorporated the self-powered flexible 
sensors with net-zero power consumption based on the Triboelectric Nanogenerator (TENG) and an intelligent 
analysis system based on artificial intelligence (AI). The feasibility of the SSTIS was tested using the full-scale 
accelerated pavement tests (APT) and the long-short term memory (LSTM) deep learning model with a 
vehicle axle load classification accuracy up to 89.06%. This robust SSTIS was later tested on highway and 
collected around 869,600 pieces of signals data. The generative adversarial networks (GAN) WGAN-GP (Was-
serstein GAN - Gradient Penalty) was used for data augmentation, due to the imbalanced data of different vehicle 
types in actual traffic. The overall accuracy for on-road vehicle type classification improved to 81.06% using the 
convolutional neural network ResNet. Finally, we developed a mobile traffic signal information monitoring 
system based on cloud platform and Android framework, which enabled engineers to obtain the vehicle axle-load 
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information mobilely. This study is the emerging design and engineering application of the self-powered flexible 
sensors for smart traffic monitoring, which provides a significant advance for intelligent transportation and smart 
cities in future.   

1. Introduction 

Sustainable monitoring of traffic using clean energy supply has al-
ways been a significant problem for engineers. There have been 
numerous studies conducted on the development of intelligent trans-
portation monitoring and sensing systems using different sensors, 
including light, ultrasonic, infrared, acoustic sensors those have been 
widely applied in vehicle queue length estimation [1], drivers signals 
monitoring [2], early detection of vehicle mechanical defects [3], traffic 
flow acquisition [4], the evaluation of road conditions [5], bridge vi-
bration and displacement monitoring [6], traffic vehicle tracking [7] 
and some other areas. Normally, these sensors may also require external 
power supplies that makes the long-term serving almost impossible. 
Moreover, many of the sensors are intrusive and usually need to be 
buried inside the road structures [8]. The stiffness of the sensors and the 
road material usually does not match, so that the deformation of the 
sensor and the road material is inconsistent under traffic load, resulting 
in possible sensor failure. Considering the characteristics of the intrusive 
sensors, they need to be installed in the structure to change the consis-
tency, uniformity and continuity of the infrastructure’s materials. It may 
further make it difficult to obtain the sensing signals with high accuracy 
due to its low adaptivity to the inevitable deformation of civil in-
frastructures under long-term service and severe environmental condi-
tions. Overall, these external powered sensors have been widely applied 
for traffic monitoring purposes, including road type classification [9, 
10], vehicle type classification [11,12], target detection [13,14], driving 
behavior detection [15], traffic flow prediction [16,17], travel time 
prediction and planning [18,19], traffic signal control optimization 
[20], road traffic safety accident prediction [21,22], etc. 

Considering the advantages and disadvantages of external powered 
sensors, they may not be suitable for the low cost and sustainable 
development of energy in smart transportation. In recent years, the 
TENG based self-powered sensors have emerged as powerful tools for 
long-term and distributed sensing and monitoring purposes [23–25]. 
Based on the tribo-electrification and the electrostatic induction effect 
[26], TENG directly converts mechanical stimuli into electrical signals 
without the need of an external power supply [27–29]. The integration 
of the novel TENG technology, 5 G and other Internet of Things (IoT) 
technology will perform the functions of efficient energy harvesting and 
information acquisition, providing a more intelligent and cleaner solu-
tion for the future digital smart cities [30–32]. Therefore, it is very 
suitable in the field of smart monitoring on transportation in-
frastructures, like asphalt pavements, as the TENG sensors are usually 
assembled with flexible materials, and thus have the characteristics of 
flexible, economical and stable output performance [33]. Consider the 
advantages of the TENG sensor, it has the potential to be used for the 
long-term, low-cost and non-intrusive transportation monitoring pur-
pose. Thus, in this study, we proposed a self-powered smart trans-
portation infrastructure skin (SSTIS) system that incorporated the TENG 
based thin flexible sensors that can be directly attached to the road 
surface and an intelligent real-time analysis system based on Artificial 
Intelligence (AI). The feasibility of SSTIS was first tested by Accelerated 
Pavement Tests (APT). The Long-Short Term Memory (LSTM) deep 
learning model was adopted for the data analysis. SSTIS was later tested 
on one section of highway near Nanjing City, China and about 869,600 
pieces of vehicle signal data were collected. The Generative Adversarial 
Network (WGAN-GP: Wasserstein GAN - Gradient Penalty) was used for 
data augmentation to solve the problem of imbalanced dataset and 
ResNet was used for intelligent classification of the vehicle types with 
accuracy of 81.06%. Based on the SSTIS system, we developed a mobile 

traffic signal information monitoring system based on cloud platform 
and Android framework, which enabled engineers to obtain the vehicle 
axle-load information mobilely. It was discovered that the proposed 
intelligent self-powered flexible sensing system can assist the regular 
public functions, like auxiliary decision-making for automatic driving, 
early warning of transportation infrastructure damage, high-efficient 
traffic flow improvement, etc, which provides the significant advances 
for intelligent transportation and smart cities in future. 

2. Bionic self-powered sensor 

2.1. Sensor design and indoor test 

The construction of SSTIS is inspired by the skin sensory system 
(Fig. 1a). Bionic sensors based on thin flexible TENG (Fig. 1b) can fit on 
the road surface, similar to the sensory part of our skin. When a vehicle 
passes by, the sensor is mechanically excited and generates an electrical 
signal via the vertical contact separation process of TENG (Fig. 1c). 
These signals are sent to the cloud platform and the deep learning ter-
minal (central part) through wireless transmission (the afferent neural 
part) for processing, and the feedback data is sent to the user through the 
wireless transmission device (the efferent neural part). Basically, each 
sensor contained a 2 * 4 TENG array. In order to ensure that the me-
chanical signal must be collected when the vehicle passes by, the dis-
tance between each sensor array did not exceed 15 cm (about the width 
of a tire). All the sensor arrays were then connected in parallel to the 
signal transmission device on the roadside. For each sensor, the overall 
device was divided into 3 functional parts. The friction layers (power 
generation layer) we chose were Poly Tetra Fluoroethylene (PTFE) and 
nano gold particles. The conductive materials were Flexible Printed 
Circuit Board (FPCB) and copper. And the encapsulation layers were 
Polyethylene Terephthalate (PET) and rubber (Fig. 1b, d). Under this 
condition, we conducted some basic electrical performance tests on the 
sensor. Single sensor can reach the peak voltage of 72 V and the peak 
current of 5.4μA. The generator internal resistance was about 13 MΩ 
through the power density test (Fig. 1e, f). 

2.2. Full-scale track APT test 

To preliminarily test the feasibility of these sensors under the actual 
severe environment on the road, we also carried out in-door fatigue tests 
in the asphalt lab in Beijing University of Technology, China. The results 
showed that the sensor can withstand more than 10,000 repeated me-
chanical loads, which meet the requirements of the actual environ-
mental signal acquisition conditions (Fig. 2f). In different ambient 
temperature tests (35–60 ℃), the sensor signals also maintained a good 
consistency (Fig. 2g, h；Supplementary Fig. S1). The feasibility of SSTIS 
was then validated by conducting the full-scale Accelerated Pavement 
Tests (APT) in University of Science and Technology Beijing, China 
(Fig. 2a). One TENG sensor with a length of 1 m was pasted and fixed on 
the surface of the road with 6 built-in sensing units in the sensor 
(Fig. 2b). The TENG sensors were sealed with the flexible rubber and 
attached to the road surface with epoxy resin adhesive. The APT’s axle 
load simulation system adopted the hydraulic pressure to realize stepless 
loading conditions. In this test, there were four kinds of loading condi-
tions applied (9MPa, 10MPa, 11MPa and 12 MPa), as listed in Table 1. 
Take Class 4 for example, the vehicle pressure is 12 MPa, Wheel No.1 
and No, 2 of Axle 1 is 7650.0 kg and 8000.0 kg, respectively; wheel No. 3 
and No. 4 is 8660.0 kg and 8246.7 kg, respectively; total weight 
is32556.7 kg and there are overally 519, 680 pieces of signals. 
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For each loading condition, the vehicle ran 50 circles at speeds of 
7 km/h, 10 km/h, 15 km/h, 20 km/h, and 25 km/h, respectively 
(Fig. 2i). SSTIS can generate 8 groups of data containing vehicle infor-
mation fingerprints at the same time (Fig. 2e) and send it to the cloud 
through 8-channel wireless transmission device for subsequent pro-
cessing (Fig. 2c, d). Under the same test conditions (load and speed), the 
sensing data between 50 cycle tests has good stability and repeatability, 
which is very important for the subsequent acquisition of data on the 
actual road (Fig. 2j). 

There were overall 16 groups of tests and each group of the test took 
about 1 h. Different loading conditions were applied by the hydraulic 
pump station to simulate four different axle load conditions. And a 
Recursive Neural Network (RNN), namely LSTM (Long Short-Term 
Memory), was used to extract, learn and analyze the signal features of 
around 2,140,160 pieces of signals data. The model included 6 LSTM 
classifiers, and consisted of two LSTM layers with a cell size of 128. The 
sensor comprised of 8 built-in sensing units. Each time the test vehicle 
passed through the sensor, a signal matrix with 2560 rows and 8 col-
umns was generated. Thus, in LSTM model, the input time point of the 
model was 2560, and the data channel of each time point was 8. The 
Dropout regularization operation was used after each LSTM layer to 
prevent over-fitting. In order to optimize the model performance, L2 
regularization term was added to the Categorical Crossentropy loss 
function, and the regularization parameter β = 0.0015. The model used 
Adam [34] optimizer to continuously update the weight parameters. 
The batch size was 128 and the learning rate of the model was set at 

0.001. Finally, this model reached a satisfactory accuracy of training set 
with 92.19% and test set with 89.06%, respectively. The full-scale 
accelerated pavement test results showed that the flexible TENG sen-
sors fixed on the surface of the road can be used to monitor different 
vehicle loading conditions accurately. 

3. Monitoring and intelligent analysis 

3.1. Real traffic signals collection 

A 4-day field test was carried out in the Ninggao section of National 
Highway 235 in Nanjing City, China. Two sensors with a spacing of 
100 cm were pasted and fixed on the asphalt road surface. The package 
size of TENG sensors was 2.00 × 0.3 × 0.002 m and the number of 
sensing units in each sensor was 8. The test used the mixing epoxy resin 
to paste the sensors to the road surface. The sensors were connected to 
the roadside data acquisition platform using a cable, and later trans-
mitted to the laptop through the Bluetooth wireless connection, which 
can be replaced by a commercial 5 G wireless connection in future 
studies. 

3.2. Signal data pre-processing 

To train the data using the deep learning methods, we first labeled 
the sensor data into the specific vehicle types according to vehicle 
classification of the Federal Highway Administration (FHWA) Traffic 

Fig. 1. A self-powered smart transportation 
infrastructure skin (SSTIS) system in smart 
cities. a. The TENG sensors were pasted and 
fixed on the road surface to construct the smart 
transportation infrastructure skin system. The 
sensors collected vehicle signals, and then these 
data can be transmitted by wireless system 
(4 G/5 G/6 G) to the brain of smart cities. The 
brain used Artificial Intelligence-based 
methods, like deep learning approaches, to 
process, analyze, and deliver the real-time 
traffic information to the road users. b. Sche-
matic diagram of TENG structure. The mate-
rials used from top to bottom were Rubber 
(top), PET, PTFE, FPCB and Rubber (bottom). c. 
The working mechanism of TENG sensor. 
Single-electrode mode TENG was used in this 
study. Two different materials of the sensor 
(Rubber and PTFE) carried equal amounts of 
dissimilar charges through mutual friction. The 
device completed the compression-release 
cycle under external force conditions. When 
the distance between the two materials 
changed, an induced electric field was gener-
ated on the outside of the bottom friction layer 
(PTFE layer). When the sensing layer was 
connected to the earth, an alternating current 
was generated. d. The image of bionic sensor 
array package based on TENG. e. f. Perfor-
mance characterization results of the TENG 
sensor, which are open-circuit voltage (blue) 
and short-circuit current (red).   
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Monitoring Guide (TMG) [35] in USA and Motor vehicles and 
trailers-Types-Terms and definitions (GB/T3730. 1–2011) [36]. A video 
camera was set near the TENG sensors to record the passing vehicles, 
and the experienced transportation technicians manually labeled the 
signals by comparing the video and the collected TENG sensor signals. 
Specifically, according to the number of vehicle axles, the axle load 
spectrum was categorized as passenger cars or two-axle, four-tire and 
single-unit vehicles, two-axle, six-tire and single-unit vehicles, 
three-axle single-unit trucks, four or fewer axle single-trailer trucks and 
six or more axle single-trailer trucks. The classification results are shown 
in Fig. 3a and Table 2. 

In order to display the vehicle axle loads more clearly, where the 
vehicle signals were firstly visualized and benchmarked. For each TENG 
sensor, it consisted of 8 units and the collected signal was a matrix with 8 
columns and multiple rows, representing the passing of vehicles over the 
sensors in a time series. The sampling frequency of the sensor is 256 Hz, 
and 400 rows correspond to 1.56 s, which is long enough to represent a 
full passing of vehicles. Thus, 400 rows were truncated from the total 
data to represent a specific vehicle passing over the sensors, constructing 
a 400 by 8 matrix. The collected signals were then pre-processed before 
the deep learning studies. Firstly, normalize the data and convert the 
signal matrices of vehicles into images. In this study, the minimum value 
of each sample was normalized to 0, the maximum value was normal-
ized to 255, and the other values were normalized according to Eq. (1). 

OutImagepiexl[i, j] = ⌊
(ymax − ymin) × (InImagepiexl[i, j] − xmin)

xmax − xmin
+ ymin⌋

(1)  

where: i represents the matric number of row; j represents the matrix 
number of the column; OutImagepiexl[i, j] is the value after normalization 
transformation operation; ymax = 255；ymin = 0; InImagepiexl[i, j] is the 
current value of the input vehicle signal data matrix; xmaxis the 
maximum value; and xmin is the minimum value. 

The key features of a raw vehicle signal, present with a 400 by 8 
matrix, are unclear. Thus, the column data of each sensing unit was 
replicated 50 times and the signal data for each axle load vehicle was 
transformed into a 400 × 400 square matrix, as shown in Fig. 3b. 

It is noticed that there exist system noises in each unit of sensors, 
resulting from (1) inconsistent performance caused by manual fabrica-
tion of TENG sensors; (2) unevenness in road surface; (3) signal noise 
caused by real environment. The signal noise of each unit is different, 
which results in the difficulties in identifying the signal image features. 
To solve this problem, one sensing unit (where the fourth unit was 
chosen in this study) was randomly taken as the standard to conduct the 
benchmark operation, according to Eq. (2). First, calculate the differ-
ence value between the median value of each column and the median 
value of the standard column. Then, subtract each unit value with the 
difference. The typical image of vehicle signals after benchmarking is 

Fig. 2. Tests on the SSTIS. a. The image of APT experimental device. b. The image of the sensor skin. c. Bluetooth module. d. e. 8 groups of real-time vehicle signal 
information generated by TENG sensors. f. The results of in-door fatigue tests in the lab. The sensor demonstrated a stable output performance in the fatigue test after 
over 10,000 cycles. g. The results of ambient temperature tests. The TENG sensors outputted the stable voltage result as temperature changed continually. h. 
Detecting instrument of the in-door fatigue test. i. APT test results. The output change results of the TENG bionic sensor array varies with speed and pressure 
conditions. j. Normalization output of the TENG sensing data in 50 cycle tests. 
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presented in Fig. 3b. 

OutImagepiexl[i, j] = InImagepiexl[i, j] − (InImagepiexl[j]median

− InImagepiexl[std]median )
(2)  

where OutImagepiexl[i, j] is the value after benchmark operation; 
InImagepiexl[i, j] is the median value of column j of the input vehicle signal 
data matrix; InImagepiexl[std]median is the median value of the standard 
column of a vehicle signal data; and the meanings of other symbols are 
the same as above. 

3.3. Deep learning studies 

Then, deep learning methods were used for vehicle axle load iden-
tification and classification of the five categories. The whole computa-
tion of WGAN-GP model was conducted on a desktop workstation (CPU: 
Intel Xeon multi-core CPUs; GPU: NVIDIA Quadro P4000, 64 GB of 
RAM), based on deep learning framework Pytorch 1.0.7. The ResNet-50 
classification model was based on a deep learning framework developed 
by Google called TensorFlow 2.0, using the same computing worksta-
tion. The sever of the cloud control platform was deployed using Python 
programming language in Pycharm and the front-end website was based 
on a framework VUE in Webstorm on the same computing workstation. 
The Android application was installed on a 5 G smartphone (Version: 
Vivo Pro5G, V1916A; CPU: Snapdragon 855Plus, eight-core, 2.96 GHz). 

One problem arised in the study was that compared with the other 
two types of axle load conditions, the quantities of two-axle, six-tire and 
single-unit vehicles, three-axle single-unit trucks and four or fewer axle 
single-trailer trucks samples were very small, where it reflected the real 
traffic situation (Table 2). In deep learning, the imbalance between 
sample sizes may result in poor computation performance. The used 
convolutional neural network (CNN) ResNet-50 model was employed 
with 60% training data, 20% validation data and 20% testing data, and 
the test accuracy for the imbalanced sample dataset was 80.14%, which 
was not very satisfactory. To solve this problem, a widely deep data 
augmentation Generative Adversarial Network (WGAN-GP) [37–39] 
was adopted. The model consists of two competing networks, namely 
Generator and Discrimination (Fig. 3c). The Generator network took 
self-set random noise as input to generate fake images, while the latter 
Discrimination network was used to identify whether there was any 
difference between the fake data generated by the Generator and the 
real data. The structure of the WGAN-GP algorithm is shown in Table 3. 
The Generator network was a six-layer convolutional neural network. 
The number of kernels in each layer was [4,8], the stride was [1–3], and 
the padding was [0, 1, 1, 0, 1]. Batch normalization and ReLU activation 
functions were added behind each convolution. The Discriminator 
network was the reverse process, which took the output of the Generator 
network as the input parameter. After six times of convolution, 
normalization, and LeakyRelu activation operations, the output was a 
one-dimensional value between 0 and 1 that represented the probability 
of real data. 

The model carried out data augmentation on 402 images of 

passenger cars or two-axle, four-tire and single-unit vehicles, 226 images 
of two-axle, six-tire and single-unit vehicles, 58 images of three-axle 
single-unit trucks, 108 images of four or fewer axle single-trailer 
trucks and 509 images of six or more axle single-unit trucks. The 
learning rate was 3 × 10− 4, batch size was 10 and the gradient penalty 
item was set as 10. The model took Adaptive Moment Estimation 
(Adam) gradient descent algorithm [39] to optimize the network weight 
continuously and iterated for one million epochs. In each epoch, the 
training generator performed 1 iteration and the training discriminator 
performed 5 iterations. Both two networks train meanwhile, adjust and 
optimize with each other, jointly minimize the loss value [40]. Finally, a 
much more balanced dataset composed of 1000 training images of each 
vehicle type respectively were generated. The dataset after augmenta-
tion is shown in Table 2. 

Finally, we employed ResNet-50 to classify the vehicle axle load 
signals data (Fig. 3d). Compared with the traditional convolution layer, 
the ResNet network makes a breakthrough in using residual units to 
make the input and output of any several layers of the network realize 
shortcut connections, which results in faster training and a better per-
formance [41]. The balanced dataset augmented by WGAN-GP was 
input into the ResNet-50 model. The model utilized Categorical 
Cross-entropy as the loss function and Adam as weight update optimizer 
to carry out a mass of parameter adjustments on 5000 training images, 
438 validation images and 433 test images. The system 
hyper-parameters were: batch size = 64, the learning rate = 3 × 10− 4 

and learning rate attenuation parameter = 0.1. The default values 0.9 
and 0.999 were taken for rates for the moment estimates β1 and β2 
respectively [34]. At last, the model reached 81.06% test accuracy after 
100 epochs training. 

It should be noted that as the government policies restricted the field 
tests during the COVID-19 pandemic, we are unable to conduct more 
experiments and collect more actual data, and future studies will take 
this issue into consideration. 

3.4. Analysis results and discussion 

In this study, accuracy, precision, recall rate, F1-score value, 
confusion matrix and Receiver Operating Characteristic Curve (ROC) 
and Area Under ROC Curve (AUC) were further adopted to evaluate the 
performance results of vehicle axle load classified by the ResNet-50 
(Fig. 3e and Fig. 4d-f). Fig. 4f presents the accuracy curves during 
training. It can be seen that the approach shows high classification 
performance for different vehicle types. The evaluation metrics for each 
axle-load vehicle are shown in Fig. 4d. It is seen that the ResNet-50 
classifier is able to identify almost all the passenger cars or two-axle, 
four-tire and single-unit vehicles and six or more axle single-trailer 
trucks, where the accuracy of precision, recall and F1 score are satis-
factory. For two-axle, six-tire and single-unit vehicles, three-axle single- 
unit trucks, four or fewer axle single-trailer trucks, the precision is 0.69, 
0.72 and 0.71, recall remains 0.47, 0.74 and 0.57 and F1 score obtains 
0.73, 0.67 and 0.70, respectively. 

The confusion matrix [42] shows the performance of the classifier in 

Table 1 
Hydraulic pressure, weight and axle load types in APT test. Data obtained from the full-scale Accelerated Pavement Tests (APT) in University of Science and Tech-
nology Beijing, China on October 15th, 2019. There were four vehicle axle load types, each of which corresponded to different vehicle pressure and axle weight.  

Vehicle pressure (Mpa) Axle 1（kg) Axle 2（kg） Total Weight（kg） Pieces of signals (pieces) 

Wheel No.1 Wheel No.2 Axle Weight Wheel No.3 Wheel No.4 Axle Weight 

Class1 
9.0  

5600.0  5996.7  11596.7  6683.3  6383.3  13066.7  24663.3 542,720 

Class2 
10.0  

6376.7  6763.3  13140.0  7396.7  7026.7  14423.3  27563.3 542,720 

Class3 
11.0  

6820.0  7310.0  14130.0  7960.0  7655.0  15615.0  29745.0 535,040 

Class4 
12.0  

7650.0  8000.0  15650.0  8660.0  8246.7  16906.7  32556.7 519,680  
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Fig. 3. Data Analysis. a. Imbalanced vehicle signals dataset after manual labelling (including 670 passenger cars or two-axle, four-tire and single-unit vehicles, 377 
two-axle, six-tire and single-unit vehicles, 97 three-axle single-unit trucks, 181 four or fewer axle single-trailer trucks and 849 six or more axle single-trailer trucks). b. 
Signals pre-processing - Visualization & Benchmarking. c. A balanced vehicle signals dataset augmented by the WGAN-GP model (including 1268 passenger cars or 
two-axle, four-tire and single-unit vehicles, 1151 two-axle, six-tire and single-unit vehicles, 1039 three-axle single-unit trucks, 1073 four or fewer axle single-trailer 
trucks and 1340 six or more axle single-trailer trucks). d. ResNet-50 deep learning algorithm were used for analyzing axle load types of different vehicles. The 
composition of training, validation and test set (including 5000 training images, 438 validation images and 433 test images). e. Confusion matrix of each type of 
vehicle axle load of ResNet-50 residual neural network. 

Table 2 
Axle load type classification and dataset for deep learning algorithms for real traffic signals data. After manual calibration, a total of 6 types constituted the dataset of 
vehicle axle load in this study. Specifically: according to FHWA TMG, Type 2 was passenger car; Type 3 was two-axle and four-tire, single-unit vehicles; Type 5 was two- 
axle, six-tire and single-unit vehicles; Type 6 was three-axle single-unit trucks; Type 8 was four or fewer axle single-trailer trucks; Type 10 was six or more axle single- 
trailer trucks. Then, Type 2 and 3 was merged into the same class (Class 1). Thus, the vehicle axle load was classified into 5 categories finally, which were passenger 
cars or two-axle, four-tire and single-unit vehicles (Class 1), two-axle, six-tire and single-unit vehicles (Class 2), three-axle single-unit trucks (Class 3), four or fewer axle 
single-trailer trucks (Class 4) and six or more axle single-trailer trucks (Class 5).  

Vehicle types Type 2 Type 3 Type 5 Type 6 Type 8 Type 10 SUM 
Class1 Class2 Class3 Class4 Class5 

Dataset before augmentation using WGAN-GP 
Pieces of signals (pieces) 268,000 150,800 38,800 72,400 339,600 869,600 
Train set (unit) 402 226 58 108 509 1303 
Validation set (unit) 134 76 20 37 171 438 
Test set (unit) 134 75 19 36 169 433 
SUM (unit) 670 377 97 181 849 2174 
Dataset after augmentation using WGAN-GP 
Train set (unit) 1000 1000 1000 1000 1000 5000 
Validation set (unit) 134 76 20 37 171 438 
Test set (unit) 134 75 19 36 169 433 
SUM (unit) 1268 1151 1039 1073 1340 5871  
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terms of the type of vehicle axle load signals images that have been 
correctly classified as well as the misclassification cases for each class. 
As can be seen from the confusion matrix in Fig. 3e, the network has a 
strong discriminatory ability to distinguish passenger cars or two-axle, 
four-tire and single-unit vehicles and six or more axle single-trailer 
trucks, reaching 87.31% and 84.02% respectively. The values on the 
diagonal of the confusion matrix represent the number of samples 
correctly identified for each category. 

ROC and AUC [43] are also criteria to measure the performance of 
the classifier. Generally, when the ROC curve is closer to point (0, 1), 
that means the classifier is close to perfect. The ROC curves of each 
vehicle axle-load type are plotted severally in Fig. 4e. The area under the 
ROC curve is the AUC value, which reveals the distinction of the model 
between positive and negative samples, is expected to be closer to 1. In 
this study, the model scored an AUC of 0.95, which demonstrated an 

outstanding performance in predicting the types of vehicle axle load. 
The AUC values of passenger cars or two-axle, four-tire and single-unit 
vehicles, two-axle, six-tire and single-unit vehicles, three-axle single--
unit trucks, four or fewer axle single-trailer trucks and six or more axle 
single-trailer trucks are 0.95, 0.93, 0.94, 0.92 and 0.95 respectively 
(Fig. 4e). 

4. Cloud platform, mobile terminal testing and outlook 

Based on the desktop-level deep learning, we also developed a mo-
bile traffic signal information monitoring system based on cloud plat-
form and Android framework, which enabled engineers to obtain the 
vehicle axle-load information mobilely (Fig. 4a). The trained deep 
learning model was transferred to TFLite mobile model and then inser-
ted into Android project with the Android Studio software. In addition, 
Activity, Layout, UI interface and Service ect. were also designed with 
the help of the Android Studio development software using Android- 
JAVA language. Finally, a software package (APK file) called “Smart 
Road” monitoring application can be automatically generated after 
virtual compiling and debugging. 

Our system can be deployed on common mobile terminal devices, 
such as mobile smartphones, autonomous car navigators and so on. The 
information transmission between mobile devices and cloud platform 
was achieved by Message Queuing Telemetry Transport (MQTT) 
connection using 5 G or 4G wireless technology (Fig. 4b). The devices 
acquired vehicle real-time signals from the cloud platform and analyzed 
the signals based on the mobile deep learning model. The final 

Table 3 
Architecture of WGAN-GP used in this study. Detailed network structure of 
WGAN-GP Generative and Discriminant network.  

Generator Discriminator 

layer K, S, P Output shape layer K, S, P Output shape 

Input z — 100 × 1 × 1 Input — 32 × 224 × 224 
1 4, 1, 0 256 × 4 × 4 1 8, 2, 1 32 × 110 × 110 
2 8, 2, 1 128 × 12 × 12 2 8, 3, 0 64 × 35 × 35 
3 4, 3, 1 64 × 35 × 35 3 4, 3, 1 128 × 12 × 12 
4 8, 3, 0 32 × 110 × 110 4 8, 2, 1 256 × 4 × 4 
5 8, 2, 1 32 × 224 × 224 5 4, 1, 0 1 × 1 × 1  

Fig. 4. The cloud platform and application 
deployment. a. The process of application 
development. The development process 
included converting TFLite, building Android 
project in Android Studio platform, generating 
APK package and installing mobile application. 
b. The homepage of the cloud platform. top 
column. system information, the number of 
terminal devices, APP users and operating re-
sults. middle. the presentation of CPU usage 
and memory usage. bottom pie chart. the 
number of vehicles in different axle-load and 
the accounting ratio of vehicles in each axle- 
load type. c. Presentation of the application. 
In the APP, the classification result of vehicle 
axle-load signals can be acquired in real time. d. 
Model results. Classification performance met-
rics, including precision, recall rate, F1-score 
value of each type of vehicle axle load. e. ROC 
and AUC demonstrated the classification model 
overall performance and the classification effect 
of each type of vehicle axle load. f. Accuracy 
curves of the train and validation set are also 
presented. The final test accuracy of the model 
reached 81.06%.   
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classification result of vehicle axle-load can be displayed in the appli-
cation and fed back to the cloud platform for saving and analysis. Fig. 4c 
presents the analysis process of traffic axle-load information on the 
mobile terminal. The proposed system is closer to practical engineering 
utilization, which can not only be applied in smart monitoring and 
management of transportation information and infrastructure etc., but 
also offer a low cost and highly reliable decision-making system to road 
users. 

Our proposed SSTISs can be widely applied in sensing, wireless 
transmission and analysis of signal data of transportation infrastructure 
in the future smart cities, as shown in Fig. 5. Vehicle signals collected by 
the TENG sensors can be transmitted by advanced wireless communi-
cation technology to the brain of smart cities (the cloud platform). With 
its vast storage and computing power, the platform processed and 
analyzed the traffic information efficiently. The platform in this study 
mainly includes the deployment of back-end server and front-end 
website (Fig. 5a). The databases named MongoDB and MySQL were 
built by Python programming tool acted as the transmission interme-
diary of the TENG sensors between the communication gateway and 
terminal equipment. The presentation front-end was developed using 
the VUE framework. Users’ information, the running results of artificial 
intelligence-based models, CPU usage and memory usage can be present 
on the homepage of the platform. In addition, the platform enabled to 
realize the operational management of terminal devices, deep learning 
models and real-time vehicle monitoring information. 

5. Conclusions 

This study is an innovative design and engineering application of the 
self-powered flexible sensors for smart transportation monitoring, which 
provides a significantly innovative approach for advanced sensing in 
smart cities. The authors systematically proposed a new smart clean- 
energy based transportation infrastructure skin (SSTIS) system inte-
grating the bionic TENG sensors and the deep learning models, which 
can perceive, acquire, and analyze the real-time vehicle type informa-
tion. The feasibility of the self-powered TENG sensor was tested by the 
full-scale Accelerated Pavement Test and field test, verifying that the 

sensors can accommodate different transportation situations and severe 
natural environmental conditions. ResNet-50 network was used to 
capture and identify different axle load characteristics of the vehicles 
and achieved a precise performance with an accuracy of 81.06% and a 
micro-averaged AUC & ROC of 0.95. On this basis, the authors devel-
oped a mobile vehicle axle-load monitoring system. The application is 
designed for any embedded systems such as Android devices. 

With SSTIS system proposed in this study, a self-powered, intelligent, 
and accurate monitoring of civil infrastructures such as vehicles, roads, 
bridges, and buildings can be achieved, to realize the regular functions 
in a smart city. Besides, with the fast development of commercial 5th 
generation wireless (5 G) technologies, the transmission between things 
and the cloud platform (i.e. city brain) will become faster and more 
stable. And with the help of the strong computation ability of the cloud 
platform, the whole city can operate and run more intelligently. 
Furthermore, the mobile intelligent monitoring and analysis has been 
preliminarily developed by the authors using TensorFlow Lite by Goo-
gle. The developed Android application named “Smart Road” in this 
study can be deployed on smart phones, autonomous cars and so on for 
all the mobile computation scenes. It used an Android application and 
wireless communication technology to achieve fast, reliable communi-
cation between traffic infrastructure and road users. In general, SSTIS 
provides a powerful tool in achieving a self-powered real-time and 
sustainable monitoring in the smart city of the future. 
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