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A B S T R A C T   

Contact electrification (CE), as a well-known physical phenomenon, is widely used in energy, purifying appli
cations. However, employing the electron-transfer in heterophase interfaces CE during mechanical stimulation to 
induce chemical reactions is rarely reported. Recently, the concept of contact-electro-catalysis (CEC) was pro
posed, which represents the reactivity of charge exchange at heterogeneous interfaces and the catalytic per
formance of pristine dielectric powders. In this study, we aim to investigate the optimal parameters for CEC 
under the ultrasonic reaction condition. We investigated the degradation of methyl orange (MO) solution by 
Fluorinated Ethylene Propylene (FEP) powder under different ultrasonic powers of 120 W, 240 W, 360 W, 480 
W, 600 W, and different frequencies of 20 kHz, 28 kHz, 40 kHz and 89 kHz, in 240 min. The experimental results 
showed that the final degradation rate of MO increases with the increase of ultrasonic power. And the highest 
final degradation rate was obtained at the ultrasonic frequency of 40 kHz. Meanwhile, it is found that a highest 
reaction rate was achieved around 22 ℃ with the FEP as the catalyst in our experiment. Furthermore, we studied 
the effect of different dielectric particles on the organic solutions’ decolorization. It is found that the CEC 
degradation is more prone to occur in the catalyst with strong electron-withdrawing ability (e.g. FEP vs. MO), 
while apparent physical adsorption occurs when the catalyst and the targeted organic ions possess opposite 
electric polarity (e.g. Nitrile Butadiene Rubber (NBR) vs. MO, or FEP vs. Rhodamine B (RhB)). This study helps to 
characterize the optimal conditions and the further understanding of CEC reactions and catalysts.   

1. Introduction 

Contact electrification (CE) has been discovered for more than 2600 
years due to its universality. Since 2012, CE based triboelectric nano
generator has been widely used in many fields, such as the harvesting of 
body motion energy [1,2], the collection of vibration [3,4], wind [5–7], 
rain [8,9] energy, large-scale water wave energy harvesting [10–12] 
self-powered internet of things [13,14], and wearable sensing [15,16]. 
Recently, the research on the contact electrification mechanism of the 
liquid-solid interface has been reported [17,18], which demonstrated 

that the electrons play a dominant role in the charge transferring 
occurring at the interface. Therefrom, the mechanism of 
contact-electro-catalysis (CEC) has been proposed [19]. It is based on 
the contact electrification induced electron transfer among the dielectric 
material, reactant or surrounding medium. Considering the ubiquity of 
the materials electrification property, CEC broadens the selection of 
catalyst materials, compared to the traditional metal-based- [20], 
enzyme- [21], organo- [22] catalysis, as well as photocatalysis [23,24], 
piezocatalysis [25–27] and so on. 

In this paper, taking the degradation of methyl orange (MO) as an 
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example, we investigated the optimal parameters for CEC, including the 
ultrasonic power, frequency, temperature, as well as different catalysts. 
Experimental results show that the best CEC performance is obtained at 
40 kHz and 600 W, and 20–30 ℃ is the optimal temperature range. As 
for catalytic materials, we found that the CEC degradation is more prone 
to occur in the catalyst with strong electron-withdrawing ability (e.g. 
Fluorinated Ethylene Propylene (FEP) vs. methyl orange (MO)), while 
apparent physical adsorption occurs when the catalyst and the targeted 
organic ions possess opposite electric polarity (e.g. Nitrile Butadiene 
Rubber (NBR) vs. MO, or FEP vs. Rhodamine B (RhB)). 

2. Experimental 

2.1. Sample preparation 

Methyl orange [C14H13N3NaO3S, Macklin, 98%; Molecular weight: 
327.33], rhodamine B [C28H31ClN2O3, Macklin, 99%; Molecular weight: 
479.01], methylene blue [C16H18ClN3S, Macklin, 98%; Molecular 
weight: 319.85], fluorinated ethylene propylene (FEP) [(C3F6⋅C2F4)n, 
Dupont; Density: 2.15 g/cm3; Particle size: 3 µm], polyvinylidene fluo
ride (PVDF) [(C2H2F2)n, SOLVAY; Density: 1.76–1.80 g/cm3; Particle 
size: 4 µm; Molecular weight: 320000–670000], nitrile butadiene rubber 
(NBR) [(C4H6)m(C3H3N)n, Kumho; Particle size: 4 µm; Molecular 
weight: ~700000], polyvinyl chloride (PVC) [(C2H3Cl)n, Kumho; Den
sity: 1.38 g/cm3 (25 ℃); Molecular weight: 50000–110000], polyoxy
methylene (POM) [(CH2O)n, Dupont; Density: 1.39–1.43 g/cm3 (25 ℃); 
Particle size: 4 µm; Molecular weight: 20000–110000]. 

A 5-ppm solution of methyl orange was prepared from 5 mg of 
methyl orange and 1 L of ultrapure water and subjected to one hour of 
magnetic stirring. Approximately 20 mg of FEP powder was added to 50 
mL of as-prepared methyl orange solution and stirred magnetically at 
1000 rpm for 48 h. Then, the methyl orange solution containing the FEP 
powder was then subjected to ultrasonication in a single tank ultrasonic 
cleaner (Yumeng, JTS-1024) for 240 min. Aliquots were sampled at 0, 
15, 30, 60, 120, 180 and 240 min. The particles after reactions were 
separated from the solution by using a vacuum filter and placed in a 
drying oven at 40 ◦C overnight. Deionized water was used through all 
experimental procedures and the water temperature changes in the ul
trasonic cleaning bath were controlled by a copper cooling system. 

2.2. Sample characterization 

The concentration of methyl orange in aqueous solution was 
analyzed by UV-Vis spectrophotometer (Cary 3500 and Shimadzu UV- 
3600) at the characteristic wavelength. 

Differential scanning calorimetry (DSC) test was performed on a 
PerkinElmer differential scanning calorimeter DSC6000. The test at
mosphere was nitrogen and the heating rate was 20 ◦C/min, the tem
perature range was 20–200 ◦C and maintained for 3 min. Then the 
temperature was cooled down to 0 ◦C at a rate of 50 ◦C/min and 
maintained for 3 min. This process eliminated the material thermal 
history and finally increased the temperature from 0 ◦C to 200 ◦C at a 
rate of 20 ◦C/min. The glass transition temperature of FEP was measured 
during this process. 

The X-ray photoelectron spectroscopy analysis was performed on a 
Thermo Fisher Scientific Nexsa, USA. The chamber vacuum was 5 ×
10− 9 mBar, using an Alka ray source (hv=1486.6 eV). The operating 
voltage was 12 kV and the filament current was 6 mA. The test signal 
was accumulated for 5–50 cycles. The full-spectrum test pass-energy 
(Passing-Energy) was 200 ev in 1 eV steps and the narrow-spectrum 
test pass-energy (Passing-Energy) was 50 ev in 0.1 eV steps, with a 
charge correction using C1s= 284.80 eV binding energy as the energy 
standard. 

The Liquid chromatography–mass spectrometry (LC-MS) analyses 
were conducted using a Thermo Scientific Q Exactive Orbitrap 
Quadrupole-Electrostatic Field Orbitrap High-Resolution Tandem Mass 

Spectrometer. The HESI ion source of the mass spectrometer was set at 
− 3.0 kV, in positive ion mode. The mass spectrometry scanner was set 
on the full scan range of 100–1000 m/z. The column used was Hypersil 
Gold C18 (2.1 *100 mm, 1.9 µm) and the column temperature was 40 ℃. 
The flow rate is 0.3 mL/min and the injection volume is 5 μL. Mobile 
phase A was composed of 0.1% formic acid aqueous solution, and mo
bile phase B was an acetonitrile solution. The temperature of the sample 
tray is 8 ◦C. 

3. Results and discussion 

3.1. The overall experimental setup 

The main part of the experimental setup is shown in Fig. 1a, and the 
degradation of MO by contact-electro-catalysis (CEC) is carried out in 
the ultrasonic reaction bath. This ultrasonic chamber can be set to four 
frequencies of 20 kHz, 28 kHz, 40 kHz and 89 kHz and a maximum input 
power of 600 W. The acrylic plate serves as a beaker support and the 
bottom of the beaker is approximately 1 cm away from the ultrasound 
probe at the bottom of the reaction chamber. The initial temperature of 
all reactions was 20 ◦C. In order to modulate the water temperature 
during the sonication process, a copper pipe cooling system was intro
duced to the setup. The volume of deionized water in the reaction bath is 
fixed at 8.55 L in order to obtain a larger actual power input and more 
convenient to compare the power density under different powers. 
Fig. 1b shows the overall experimental process of the parameter’s 
optimization of CEC reaction. According to the CEC principle [19], due 
to the propagation of ultrasonic waves in the solution, the formation, 
growth and collapse processes of cavitation bubbles are induced. This 
extremely intense process not only provides the conditions for the 
frequent contact-separation cycles between FEP and water, but also 
promotes the electron transfer between the two during contact electri
fication. After the interaction with water, the FEP surface becomes 
negatively charged. At the same time, the bursting of the cavitation 
bubbles causes the oxygen molecules contained therein to be released 
during the process and to grab electrons once they collide with the 
charged catalyst surface. This cycle is repeated as long as the ultra
sonication sustains. As a result, oxygen that captured electrons forms 
superoxide radicals and gives rise to the formation of hydroxyl radicals 
by a chain reaction. These reactive radicals can react with the target 
organic molecules (e.g., methyl orange). In our experiments, 48 h of 
stirring prior to ultrasonication is performed for all experiments, to 
achieve better contact between FEP and water. Then, beakers containing 
suspension are placed in the ultrasonic reaction bath. 

3.2. Ultrasonic parameter optimization 

CEC is activated by the process of cavitation bubble formation, 
growth and collapse, while ultrasonic power and frequency determine 
the two main parameters of cavitation bubbles, i.e. number and size. In 
order to investigate the effect of ultrasonic parameters on the perfor
mance of CEC, we compared the degradation of methyl orange (MO) 
with FEP as the CEC catalyst, at different input powers (60 W, 120 W, 
240 W, 360 W, 480 W and 600 W) under different ultrasonic fre
quencies of 20 kHz, 28 kHz, 40 kHz and 89 kHz in 240 min. The con
centration curves of MO obtained by UV-Vis spectroscopy under the 
ultrasonic frequency of 40 kHz with different powers are plotted in  
Fig. 2a. The results under frequencies of 20 kHz, 28 kHz and 89 kHz are 
shown in the Supplementary Fig 1. As we can see, the degradation rate of 
MO gradually increased with the increase of power from 60 W to 600 W. 
As a comparison, Supplementary Fig. 2 shows that little degradation of 
MO occurs in the absence of ultrasonication, as well as in the absence of 
catalyst. Fig. 2b illustrates the final degradation rate of MO under 
various ultrasonic powers with the frequency of 40 kHz. The final 
removal efficiency increases with the power from 1.04% of 60 W to 
98.31% of 600 W. The experimental results show that a larger power 
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input will promote the degradation of MO by CEC because large ultra
sonic power induces a higher number of cavitation bubbles and energy. 
Fig. 2c compares the degradation at different ultrasonic frequencies with 
the power of 600 W, and Fig. 2d shows the kinetic constants [28] 
(Supplementary Note 1) corresponding to four frequencies. Owing to the 
degradation of MO molecule itself mainly happens at the first stage, only 

the change of MO concentration in the first 60 min was studied ac
cording to the previous study [19]. The reaction kinetic constants of MO 
at 600 W increases with frequencies (20 kHz, 28 kHz, 40 kHz, 89 kHz) 
as follows: 0.0231 min− 1, 0.0278 min− 1, 0.0364 min− 1 and 
0.0343 min− 1. In addition, the corresponding maximum removal effi
ciency of MO at the four frequencies are 97.30%, 98.14%, 98.31% and 

Fig. 1. The overall experimental setup and experimental protocol. (a) Ultrasonic reaction bath; (b) The experimental protocol and CEC degradation diagram.  

Fig. 2. Effect of different ultrasonic parameters on the degradation of methyl orange (MO). (a) Effect of different power (60 W, 120 W, 240 W, 360 W, 480 W and 
600 W) on the degradation of MO by FEP at 40 kHz. (b) The maximum MO removal efficiency evolution corresponding to each power at 40 kHz. (c) Evolution of UV- 
Vis absorbance of MO at four frequencies (20 kHz, 28 kHz, 40 kHz and 89 kHz). (d) Kinetic constants of MO degradation at the frequency of 20 kHz, 28 kHz, 40 kHz 
and 89 kHz. (e) Evolution of ultrasonic power density at different frequencies. (f) Final removal efficiency of MO at different frequencies and powers. 
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95.51%, respectively (Supplementary Fig. 3). Therefore, we can 
conclude that 40 kHz and 600 W are the best ultrasonic parameters for 
CEC reaction in our experiments, with a highest decolorization rate 
(98.31%) of MO and a highest reaction rate constant (0.0364 min− 1). 
The CEC degradation performance is largely determined by the contact 
separation cycles between water and catalyst (frequency) and the actual 
energy dispersed in the reaction system (power), and in our experi
ments, the latter varies with the former. Therefore, we measured the 
ultrasonic power density as a bulk effect to explain the differences in 
CEC degradation at different frequencies using calorimetry method [29] 
(Fig. 2e). We measured the temperature (T) rise versus time (t) using an 
electronic digital thermometer with an interval of 15 min and a sam
pling frequency of four times (Supplementary Fig. 4). From the T versus t 
data, a linear fit was made to the data to obtain the rate of change of 
temperature, dT/dt. All measurements of temperature are repeated three 
times to ensure more accurate results. In this study, the liquid phase 
medium is deionized water and the volume is fixed at 8.5 L. Fig. 2e 
shows that the ultrasonic power density (Supplementary Note 2) in
creases with the ultrasonic frequency as 18.1 W/L, 25.4 W/L, 25.3 W/L 
and 24.6 W/L. The highest power density was obtained in the range of 
28–40 kHz, which is consistent with the above MO’s degradation 
experimental results. Fig. 2 f shows the removal rate of MO for all ul
trasonic parameters, and the experimental results illustrate that the final 
degradation rate is closely related to the power density. 

3.3. The effect of temperature on CEC performance 

In order to obtain the effect of temperature change on the perfor
mance of CEC, we compared the final degradation rate of methyl orange 
by FEP at 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C and 50 ◦C, respectively. The 
experimental results are shown in Fig. 3a, which indicates the degra
dations at 20 ◦C, 30 ◦C are obviously faster. The reaction rate constants 
are calculated and plotted in the Fig. 3b. It tends to increase and then 
decrease with the increasing temperature and reaches a maximum 
degradation rate of 0.0364 min− 1 at around 22 ◦C. In addition, the final 
removal rate can be found in Supplementary Fig. 5, and it increased 
from 66.5% at 50 ◦C to 97.7% at 20 ◦C within 180 min. From this study, 
it appears that the most favorable temperature for the CEC process lies 
between 20 ◦C and 30 ◦C. We speculate that the FEP powder undergoes 
a glass transition process [30] in our experiments when the temperature 
beyond a certain value. And the differential scanning calorimetry (DSC) 
results presented in Fig. 3c verify this assumption. The glass transition 
temperature is around 35 ◦C, that is, the changing viscosity and soft
ening of the polymer particles above the glass transition region affect the 
CEC process. Nevertheless, the temperature influence might be complex, 
further experiments are required for a deep understanding. 

3.4. Investigations on different catalysts (dielectric materials) of CEC 

In addition to the environmental conditions, the contact electrifica
tion performance of the catalytic material itself also dominates the 
performance of the CEC reaction. We selected different dielectric ma
terials, including electronegative materials (Polyvinyl chloride (PVC), 
Polyvinylidene difluoride (PVDF), FEP), and electropositive materials 
(Nitrile Butadiene Rubber (NBR), Ethyl cellulose (EC), Polyoxy
methylene (POM)), to investigate the decolorization rate of MO. In the 
case of single particles (Fig. 4a, and b), the total amount of catalyst was 
20 mg. And in the case of particle combinations (Fig. 4d-i), the total 
amount of each catalyst was 10 mg. Fig. 4a, and b show the decolor
ization of MO by three electronegative particles and three electroposi
tive particles, respectively. The reaction in the presence of FEP showed a 
higher decolorization rate of MO overall. According to the literature 
[17], the electron-withdrawing (EW) ability of a polymer is related to 
the elemental type of its side chain functional groups and the degree of 
unsaturation of the functional groups. The presence of F atoms in the 
side chains lead to a higher charge density [17] in contact with water 
due to the strong EW ability of the F group, while the content of the F 
element also directly determines the electronegativity of the polymer. 
Therefore, the amount of transferred charge decreases sequentially with 
FEP (polyfluoro), PVDF (bifluoro), and PVC (without F) during the 
electrification process. Hence, the FEP shows a better degradation per
formance. In addition, we studied the degradation of methyl orange by 
FEP powders of different particle sizes as shown in Supplementary 
Fig. 6. The final degradation rate of methyl orange underwent a 
considerable change, increasing from 28.9% to 98.31% with the 
decrease of FEP particle size. And the FEP particles of 3 µm showed the 
highest kinetic reaction constants (K=0.0364 min− 1). These results 
imply that there may be a critical size of the catalyst particle size to 
activate an effective CEC process. Whereas, the reaction activated by 
electropositive particles were obviously low. We examined the C1s and 
O1s X-ray photoelectron spectroscopy (XPS) energy spectra of NBR 
Rubber particles before and after the reaction, as shown in Supple
mentary Fig. 7a, b, respectively. No shift in the binding energy of the 
original peaks was observed after the reaction by using NBR particles, 
which demonstrates the stability of electropositive particles in the CEC 
process. However, new peaks of S appear on the NBR particles spectrum 
(Fig. 4c), which could come from the MO molecule, indicating the MO 
molecule’s physical absorption. This is apparently different from the 
experimental results that by electronegative particles. Subsequently, we 
studied the decolorization of MO by the mixed particles with PVC, PVDF 
and FEP as electronegative materials, and NBR Rubber, EC and POM as 
electropositive materials (Fig. 4d-i). The experimental results show that 
the EW ability of the electronegative particles in the CEC process dom
inates the extent to which the reaction proceeds. In the mixed reaction 

Fig. 3. Effect of different temperatures on CEC performance. (a) Evolution of UV-Vis absorbance of methyl orange at 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C and 50 ◦C, 
respectively. (b) Degradation kinetics. (c) Differential scanning calorimetry result for FEP powders and Tg indicates the glass transition temperature. 
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system, the final decolorization rate of MO increased with the EW ability 
of the electronegative particles, from a lowest of 16.2% for the PVC/NBR 
to a highest of 98.6% for the FEP/NBR. Specifically, the final decolor
ization of MO reached 98.6%, 96.8% and 98.6% in the presence of FEP 
in combination with NBR, EC and POM particles, respectively. 

Considering the MO is a salt (C14H14N3SO3Na), the targeted organic 
ions (C14H14N3SO3) should be negative, and the FEP shows an excellent 
CEC ability in the above experiments. Therefore, rhodamine B 
(C28H31ClN2O3, RhB) and methylene blue (C16H18ClN3S, MB), with their 
targeted organic ions positive, are selected to reperform the reaction. 
Specifically, FEP vs. MO, FEP vs. RhB, FEP vs. MB, POM vs. MO, POM vs. 
RhB and POM vs. MB are checked. And results are plotted in Fig. 5a. 

It indicates that the set of FEP vs. RhB shows the fastest decreasing 
rate, followed by the set of FEP vs. MO. While the set of POM vs. RhB 
shows the lowest decreasing rate, and that of POM vs. MO is a bit higher. 

Furthermore, liquid chromatography-mass spectrometry (LC-MS) ana
lyses were performed to investigate the chemical degradation during the 
CEC process. From Fig. 5b-c, we can see that there is scarcely any 
chemical degradation in the set of POM vs. RhB, while in the case of 
POM vs. MO, obvious chemical degradation was obtained. And consid
ering that the decrease in the intensity of the main peak is contributed by 
both physical adsorption and chemical degradation, we can calculate 
the area of each ion peak (see Supplementary Fig. 8), and presume that 
the proportion of chemical degradation, physical adsorption, and un
decomposed MO during 240 min of ultrasonication were: 26.8%, 49.6%, 
and 23.6%, respectively. The normalized ratios of chemical degradation 
and physical adsorption were: 35.1%, 64.9%, respectively. On the other 
side, Fig. 5d shows that FEP successfully degraded the MO molecules 
(based on the data from the previous study [19] of the degradation of 
MO by FEP powder), but in the case of FEP vs. RhB (Fig. 5e), no apparent 

Fig. 4. Evolution of UV-Vis absorbance of the methyl orange solution during ultrasonication with different particle combinations. (a) Evolution of UV-Vis absorbance 
of the methyl orange solution in the presence of different electronegative particles (PVC, PVDF, FEP). (b) Evolution of UV-Vis absorbance of the methyl orange 
solution in the presence of different electropositive particles (NBR Rubber, EC, POM). (c) S2p X-ray photoelectron spectroscopy (XPS) spectrum of NBR after the 
reaction. Inset of c: Optical photos of NBR powder before and after the CEC process. Decolorization of MO in the presence of (d) PVC, (e) PVDF and (f) FEP 
(electronegative particles) in the particle combination system, respectively. Decolorization of MO in the presence of (g) NBR Rubber, (h) EC and (i) POM (elec
tropositive particles) in the particle combination system, respectively. 
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Fig. 5. Decolorization of organic molecules with different electric polarities in the presence of different catalyst materials. (a) UV–vis spectra of RhB solution 
(positive polarity) and MO solution (negative polarity) in the presence of different catalysts (FEP, negative; POM, positive). Inset of a: Optical photos of FEP powder 
before and after CEC process (Before: 0 min; After: 240 min). (b) Liquid chromatography-mass spectrometry (LC-MS) analysis of RhB solution in the presence of POM 
(0 min, 240 min). (c) LC-MS analysis of MO solution in the presence of POM (0 min, 240 min). (d) LC-MS analysis of MO solution in the presence of FEP (0 min, 
15 min). (e) LC-MS analysis of RhB solution in the presence of FEP (0 min, 15 min). 
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degradation was found around 15 min. However, the latter’s UV-Vis test 
shows the fastest decreasing rate, which suggests that when CEC cata
lyst’s polarity is opposite to that of the targeted degradation ions, 
physical adsorption will take the priority, leading to the catalytic per
formance inhibition. The LC-MS analyses of the decolorization of MB 
solution by POM and FEP are shown in Supplementary Fig. 9. Both 
positively charged dyes showed similar decolorization behaviors in the 
presence of FEP and POM as the catalysts. 

At last, we varied the total amount of particles to study the decol
orization of MO with different particle combination systems and single 
particle systems, respectively (Supplementary Fig. 10). It is found that 
there may be a saturation value for the amount of dielectric particles 
introduced for degradation. For instance, in our experiment, the satu
ration amount of FEP is about 10 mg, for degrading 5 mg/L MO solution 
with a volume of 50 mL. 

4. Conclusions 

In conclusion, the performance of degradation of MO by CEC under 
different ultrasonic parameters (Frequencies of 20 kHz, 28 kHz, 40 kHz, 
89 kHz and powers of 120 W, 240 W, 360 W, 480 W, 600 W) and 
different temperatures (10 ℃, 20 ℃, 30 ℃, 40 ℃ and 50 ℃) was 
studied. The effect of different ultrasonic parameters on CEC was 
investigated by FEP powder on the degradation of MO solution at 20 ◦C. 
Experimental results show that 40 kHz and 600 W are the best ultrasonic 
condition for CEC in our experiments, and 20–30 ◦C is the optimal 
temperature range for the case of FEP. By investigating the effect of 
different catalysts for CEC reaction, we found that the performance of 
CEC degradation is determined by the electronegative materials. And 
the chemical degradation is more prone to occur in the catalyst with the 
strong electron-withdrawing ability (e.g. FEP vs MO), while apparent 
physical adsorption occurs when the catalyst and the targeted organic 
ions possess opposite electric polarity (e.g. NBR vs MO, or FEP vs RhB) 
and physical adsorption affects the final degradation rate of organic 
molecules during the CEC process. Our research provides detailed in
structions for the performing of CEC process under ultrasonic condition, 
as well as a further understanding of CEC and CEC catalysts. 
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