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A B S T R A C T   

The advent of the artificial intelligence (AI) and Internet of Things (IoTs) era has spurred a surge in the analysis 
of voluminous data gathered from myriad distributed sensors. This endeavor is primarily aimed at executing 
sophisticated recognition functions, which frequently demand excessive energy consumption. As a result, the 
development of a streamlined design capable of performing these functions with comparable efficiency continues 
to pose a significant challenge. Herein, a rigiflex pillar-membrane triboelectric nanogenerator (PM-TENG) is 
proposed for universal stereoscopic recognition by machine learning. An integral design is adopted to generate 
dynamic sensing signals in time series, which can obtain abundant and high-resolution information of stereo-
scopic structures. By combining the advantages of both rigid steel pillars and flexible/elastic membranes, the 
proposed rigiflex PM-TENG contains information from multiple sensing pillared pixels and focuses on the study 
of dynamic changes during the whole contact cycle. The proposed rigiflex TENG can effectively recognize objects 
across nine categories by leveraging machine learning technique, achieving an accuracy rate of 96.39 %. This 
system offers substantial potential for application in assembly lines for production control management in future 
smart factories and unattended warehouse workshops.   

1. Introduction 

The rapid advancement of artificial intelligence (AI) and 5 G tech-
nology is ushering in a new era for Internet of Things (IoTs). These 
cutting-edge technologies hold the potential to revolutionize intelligent 
manufacturing and smart home systems. Leveraging the IoT framework 
to couple with extensive data transmission capabilities facilitates real- 
time sensory information gathering, data management, and analysis 
[1]. The integration of AI and IoT technologies paves the way for an 
Al-centric living, working, and manufacturing environment, termed as 
AI of Things (AIoTs). This integration promises streamlined IoT opera-
tions, augmented human-machine interaction, and enriched 
decision-making processes that are dynamic and systematic [2]. With 

the pervasive sensor data from AIoTs, real-time control and optimization 
of products and production lines can be readily achieved. 

Over the past few decades, a proliferation of sensory devices, 
grounded in materials sciences, has been developed using micro/nano-
fabrication technology. These devices have found applications in areas 
such as environmental detection [3–7], motion monitoring [8–10], and 
intelligent control [11–15]. Concurrently, numerous sensing mecha-
nisms have been extensively researched. These include resistive-based, 
capacitive-based, and transistor-based sensors designed to detect 
strain, static/dynamic force, or even complex motions with high sensi-
tivities [16–18]. Despite advancements in sensor sensitivity achieved 
through these studies, certain limitations continue to restrict their 
practical applications. Currently, most sensor functions rely on 
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time-domain data analysis of the collected sensing signals, typically 
through frequency and signal amplitude analysis, with an emphasis on 
enhancing sensitivity and signal mapping [19,20]. However, traditional 
methods of sensory signal analysis may inadvertently omit some sig-
nificant features within the sensing signals. 

The swift advancement of machine learning (ML) paves the way for 
enhancing sensor functionality through a specific method of signal 
analysis and processing [21]. To extract detailed sensory information 
from these sensors, sophisticated AI technology employing ML-assisted 
data analytics can be utilized in a monitoring or recognition system. 
This approach eliminates the need to expend significant energy to up-
grade the hardware performance of the sensory equipment. By 
leveraging appropriate learning models for the specific sensing appli-
cations, more detailed and comprehensive information can be extracted 
from the simply designed sensors, such as contact force, contact se-
quences, and approaching speed [22–25]. The output patterns trained 
from the touching or contacting behavior subjected to various 
objects/motions/structures and relevant recognition process can be 
achieved, rather than simple state detection [26–30]. Therefore, ma-
chine learning offers a promising and feasible solution for achieving 
high accuracy with low computational cost in ubiquitous sensors. The 
advancements in highly adaptive machine learning techniques hold 
potential for an economical and feasible solution for future practical 
applications such as smart factory and intelligent manufacturing. 

The analysis of vast data gathered from numerous distributed sensors 
is becoming increasingly prevalent [20,31–33]. A scalable tactile glove 
system, equipped with a sensor array of 548 distributed sensors and 
assisted by deep convolutional neural networks, was developed to 
identify individual objects, estimate their weights, and investigate the 
typical tactile patterns observed during object grasping [34]. Higher 
resolution in sensing array typically correlates with an increase in the 
number of sensing pixels and electrodes, leading to higher costs and 
complexities in structure design, fabrication, data collection, and signal 
processing [31,35]. The substantial volume of generated data, which 
demands increased computing power, may not be essential for all 
standard interactive applications. To address this issue, the concept of 
minimalist design was introduced [36–38]. This trend generally aligns 
with the application of in-sensor machine learning processing. For 
instance, Boutry et al.[39] reported on a bioinspired e-skin deployed on 
robotic finger that primarily utilized a multi-dimensional capacitive 
sensor, adhering to the minimalistic concept. The proposed e-skin can 
detect both normal and shear forces with high sensitivity, demonstrating 
precise hand dexterity information. This research could potentially 
enhance the design of sensory systems in soft robotics. Accordingly, 
common requirements on the minimalist sensor design include 
achieving the same functionality as multiple sensing arrays using a 
minimal number of sensing units or even a single unit [40,41]. Besides, 
minimalist-designed sensors paired with proper machine learning 
models are highly desirable to detect time-series contact 
patterns/sequences. 

Since its inception in 2012, the triboelectric nanogenerator (TENG) 
has garnered significant global attention as an effective high-entropy 
energy harvesting technology [42]. This is due to its high output per-
formance, wide availability of materials, lightweight nature, ease of 
manufacturing, simple configuration, diverse operation modes, and 
cost-effectiveness. Beyond energy harvesting, TENGs can function as 
various types of sensors, offering a promising approach to self-powered 
spatiotemporal sensing that is crucial for reducing overall system power 
consumption and endowing multimodality. They can serve as 
self-powered sensors for a variety of mechanical stimuli, including dy-
namic pressure/tactile sensing [43,44], vibration detection by 
rigid-flexible coupling design [11,45–47], acoustic [48,49]/speed 
[50]/human motion monitoring [51], biomedical sensors [9], and 
artificial afferents [52,53]. Despite extensive research on TENGs across a 
range of applications, most studies focus on planar structures with 
contact-separation mode. Research on stereoscopic objects’ 

contact-separation has been minimal, resulting in few TENG tactile 
sensors capable of stereoscopic sensing [54]. Therefore, the develop-
ment of a TENG-based self-powered object recognition system could 
offer an energy-efficient solution for future intelligent interaction and 
manufacturing. At present, visual recognition represents one of the most 
advanced methods for achieving recognition tasks, such as facile feature 
identification and human motion capture. However, these technologies 
exhibit several limitations in their applications. For instance, visual 
recognition has difficulty detecting fine features and is not effective in 
dark environments, thereby limiting its use at nighttime [55,56]. 
Consequently, TENG-based sensors could serve as a crucial comple-
mentary solution to visual recognition, particularly considering energy 
conversation. When integrated with the recently popular ML technique, 
it holds potential to identify the shape, size (or even type) of objects (or 
components) for classification purposes in unattended factories. 

In this study, we introduce a rigiflex pillar-membrane triboelectric 
nanogenerator (rigiflex PM-TENG) enhanced with ML technique for 
universal stereoscopic recognition. Drawing parallels to the Yin-Yang 
complementarity found in Tai Chi (Fig. 1a-i), the designed PM-TENG 
adeptly merges the benefits of rigid/compact pillared structures moun-
ted against a flexible/elastic membrane, termed “rigiflex”, which ensure 
that the rigidity maintains the sensing position while retaining flexibility 
for an adaptive sensing process [57]. In this design, the rigid μm-scale 
steel pillar structure is utilized to discern the object’s stereoscopic shape 
as reflected by the corresponding displacements of steel pillars. The 
dense distribution of steel pillars on the supporting board facilitates 
high-fidelity sensing of the object (Fig. 1a-ii). All the rigid steel pillars 
are interconnected with the Al tape electrode to achieve minimalistic 
sensing. The flexible membrane allows the rigid steel pillars to revert to 
their initial state, simplifying repeated experiments (Fig. 1a-iii). Our 
proposed rigiflex PM-TENG encompasses data from multiple sensing 
pillars, emphasizing the examination of the dynamic changes 
throughout the entire contact cycle. To broaden the capabilities of the 
TENG-based minimalistic sensor, ML techniques enable complex tasks 
using the sensory data in the time domain, such as object recognition. 
Furthermore, we have successfully constructed a real-time object 
recognition system by integrating the minimalistic-designed rigiflex 
PM-TENG with advanced ML-based data analytics. This system com-
prises four stages: dynamic sensing, triboelectric signal acquisition, 
artificial neural network (ANN) model training, and object recognition 
(Fig. 1b), which enables the integral, minimalistic design to generate 
dynamic sensing signals in time series and offering rich/detailed 
spatiotemporal information on stereoscopic recognition. In essence, our 
TENG-based self-powered object recognition system offers an 
energy-efficient solution. This serves as a complementary element to 
visual recognition, paving the way for future intelligent interaction and 
manufacturing processes. These include object recognition, intelligent 
sorting, and recycling or reproducing incorrect products in smart factory 
(Fig. 1c). 

2. Results and discussions 

2.1. Design, working mechanism, and characterization 

The schematic structure of the rigiflex PM-TENG is delineated in  
Fig. 2a. This configuration consists of six distinct components: steel 
pillars, a plastic support plate, an Al electrode, a flexible membrane, 
fixing bolts, and an acrylic baffle (Fig. S1, S2). The Al electrode is 
interconnected with all the steel pillars. We have chosen highly elastic 
nitrile rubber (NBR) as the flexible membrane material (Fig. S3), which 
is affixed to the support plate on all four sides. Notably, each steel pillar 
can be displaced along its axial direction. By employing a μm-scale pillar 
structure, we can discern the curvature of an object by observing the 
displacements of these steel pillars. The dense arrangement of steel 
pillars on the support plate (with precisely confined positions by laser- 
engraved holes) facilitates high-fidelity sensing of the object. The 
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comprehensive dimensions of the rigiflex PM-TENG are provided in 
Fig. 2a. In contrast, only the rigid steel pillars cannot revert to their 
original state (Fig. S4a), while the sole flexible/elastic membrane en-
counters difficulties achieving fully conformal contact, particularly with 
objects possessing sharp stereoscopic shapes (Fig. S5). 

In the proposed rigiflex PM-TENG, the triboelectric output is derived 
from the contact electrification during the surface interaction between 
two dissimilar materials. Consequently, in comparison to conventional 
inertial sensors, triboelectric-based sensors that produce self-generated 
signals can significantly reduce power consumption [15,58]. The 
working mechanism of the rigiflex PM-TENG is schematically illustrated 
in Fig. 2b. Typically, a triboelectric sensor exhibits two contrasting pulse 
waveforms, corresponding to either a contact or separation cycle, 
contingent on which side the output signal is extracted. In the proposed 
rigiflex PM-TENG based stereoscopic sensor, it operates based on the 
interaction between the sensory device and external object. Initially, the 
stereoscopic sensor and the target object are separated by a specific 
distance. The inherent insulating property of the polytetrafluoro-
ethylene (PTFE) coated on the object allows for the confinement of 
induced electrostatic charges with opposite signs on its surface over an 
extended period. As the object approaches the steel pillars, a decrease in 
distance results in the Ag electrode on object having a higher electric 
potential than the Al electrode. This causes electrons to be drawn from 
the Al electrode to the Ag electrode, generating a positive output current 
signal. As the object continues to approach, some portion of it will make 
contact with the steel pillars while the remainder remains in the 

approaching state. This means that the current signal will continue to 
generate until the object fully contacts the steel pillars. When the object 
begins to separate from the device, the electrons from the Ag electrode 
are compelled to flow towards the Al electrode due to the induced 
electrical potential difference between them, resulting in a negative 
output current signal. To validate this proposed mechanism, potential 
distributions under the open-circuit conditions are simulated using 
COMSOL software, as illustrated in Fig. S6. 

To further illustrate the efficacy of the proposed rigiflex PM-TENG, a 
comparative test is conducted among the traditional TENG with flexible 
membrane (M-TENG), the pillar-structured TENG without membrane 
(P-TENG), and the proposed rigiflex PM-TENG when subjected to a 
spherical object (Fig. 2c-e). The signals from M-TENG (short-circuit 
current ISC = 17.9 nA, open-circuit voltage VOC = 8.3 V, short-circuit 
charge QSC = 1.56 nC) are significantly smaller than those from both 
P-TENG and the rigiflex PM-TENG. This suggests that the conventional 
M-TENG is unsuitable for object sensing due to its limited contact area. 
However, the μm-scale movable pillar structure allows devices with steel 
pillars to fully engage with the object, thereby significantly expanding 
the contact area. Notably, the signals from rigiflex PM-TENG in response 
to a spherical object are higher than those from P-TENG, attributed to 
the flexible membrane’s elasticity. With the flexible/elastic membrane, 
the rigiflex PM-TENG enables more complete contact between the steel 
pillars and the object, even under some degree of compression. Beyond 
signal enhancement, the flexible/elastic membrane also plays a crucial 
role in the restoring of the steel pillars, facilitating multiple and 

Fig. 1. The schematics and prospects of the rigiflex PM-TENG. (a) The structure of rigiflex PM-TENG sophisticatedly combining the advantages of both rigid steel 
pillars and flexible elastic membrane, which is analogy to the complementarity of Yin-Yang in Tai Chi. (b) The process of realizing object recognition leveraging ML 
techniques, including dynamic sensing, triboelectric signal acquisition, ANN model training and object recognition. (c) The potential applications in an assembly line 
for production control management in next-generation smart factories and workshop management at unattended warehouses. 
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repeatable object recognition. Utilizing the rigiflex PM-TENG structure, 
electrical outputs against objects of various shapes are also enhanced, as 
illustrated in Fig. 2f-h. Interestingly, while signals from rigiflex PM- 
TENG against objects of various shapes display different peak values, 
signal peaks from P-TENG against similar objects are remarkably close 
(Fig. S4c-e, corresponding triboelectric potential simulation in Fig. S7). 
The projection areas of all objects partially entering the device are 
nearly identical, resulting in closely similar signal peaks among different 

objects tested with P-TENG. However, incorporating an elastic mem-
brane into the rigiflex PM-TENG would induce compression between the 
objects and steel pillars. The variability of the invasive degree and 
contact force in time series can be clearly reflected among different 
objects during the contact and partial entry process. A comparative 
analysis of three devices reveals that the rigiflex PM-TENG is optimal for 
precise object sensing. Corresponding durability tests of the rigiflex PM- 
TENG are also illustrated in Fig. S8. 

Fig. 2. The schematic structure, working mechanism, and characterization of the rigiflex PM-TENG. (a) The schematic structure and the detailed dimensions of the 
rigiflex PM-TENG. (b) The working mechanism of the rigiflex PM-TENG which works in contact-separation mode. (c-e) Electrical outputs of the M-TENG, P-TENG, 
and rigiflex PM-TENG against the sphere-shaped object, which include the short-circuit current (ISC), the open-circuit voltage (VOC) and the transferred charges (QSC). 
(f-h) Electrical outputs of the rigiflex PM-TENG against objects with various stereoscopic shapes. (i) Dependence of the output voltage, current, and power on the 
external load resistance. (j) Charging curve of different commercial capacitors (i.e., 1, 3.3, 10, and 22 μF). (k) Charging and discharging curve with the rigiflex PM- 
TENG, where each voltage drop represents a discharging to the electronic watch. 

Y. Xiong et al.                                                                                                                                                                                                                                   



Nano Energy 129 (2024) 109956

5

As a supplementary advantage, the rigiflex PM-TENG can also be 
utilized as an energy harvester to harness waste energy from contact 
motion. At a frequency of 1 Hz, a peak power of 7.63 μW is recorded 
with load resistor of 90 MΩ (Fig. 2i). The rectified output voltages from 
the rigiflex PM-TENG could successfully charge various capacitors of 1, 
3.3, 10, and 22 μF to achieve a voltage of 5 V (Fig. 2j and Fig. S9a), 
thereby illustrating its robust charging capability as a dependable power 
source. Within approximately 250 seconds, the output from the rigiflex 
PM-TENG could charge a 22 μF capacitor up to 5 V, sufficient to 
continuously power up a commercial electronic watch (Fig. 2k, 
Fig. S9b). 

2.2. Dynamic sensing mechanism of the rigiflex PM-TENG 

The dynamic sensing mechanism of the rigiflex PM-TENG, designed 
to detect objects of varying shapes, is illustrated in Fig. 3. This approach 
diverges from other strategies that utilize numerous distributed pressure 
sensors, which primarily analyze the mapping of the static sensing sig-
nals for differentiation. Instead, our experiment employs an integral, 
minimalistic design to generate dynamic sensing signals in time series, 
which can deliver rich and detailed spatiotemporal information on 
various stereoscopic structures. The proposed rigiflex PM-TENG offers a 
cost-effective solution with reduced multiplexing and computational 
requirements compared to distributed sensory matrix [34]. The typical 
dynamic sensing process is depicted in Fig. 3a-i, comprising three main 
stages: approaching, contacting, and partially invasive process. Notably, 
during the partially invasive stage, the steel pillars in the rigiflex 

PM-TENG are dynamically and gradually displaced backward, ensuring 
the complete replication on the feature shapes of the objects. 

In this manner, the shapes of different objects can be represented by 
the dynamic displacements of the dense steel pillars, which are reflected 
in temporally characterized dynamic current signals. Even when objects 
are invasive in the sensory device only partially, their most distinctive 
characteristics are fully captured. The use of dense steel pillars allows 
the device to perceive significant segment information about the objects, 
implying that each steel pillar carries continuous shape information 
according to their corresponding contact position. Additionally, the 
laser-engraving Al electrode plays a crucial role in connecting all the 
steel pillars, which is vital for our integral and minimalist design. The 
combined signals effectively reflect key shape features such as the object 
curvature, contact area, contact sequence, and position. Apart from the 
rigid steel pillars, the flexible/elastic membrane against the rigid pillars 
can ensure the adaptive deformation and enable the rigid steel pillars to 
revert to the initial state, thereby facilitating successive and repeated 
object recognition, e.g., on the factory/logistics assembly line. 

The 3D exploded view of the rigiflex PM-TENG in relation to a 
spherical object is depicted in Fig. 3a-ii, providing an intuitive repre-
sentation of the displacements experienced by the steel pillars and the 
deformation observed in the flexible membrane. To elucidate the signal 
sequence during the sensing process, we also examine specific objects 
with noncontinuous shapes (e.g., objects with multilevel structures). As 
shown in Fig. 3b, the 3D exploded views deliver the rigiflex PM-TENG 
against different objects with single-level, dual-level, and triple-level 
structures. The temporal contact sequence can be intuitively discerned 

Fig. 3. Dynamic sensing mechanism of the rigiflex PM-TENG against objects with various shapes. (a) (i) The dynamic sensing process for the sphere-shaped object, 
consisting of approaching, contacting, and partially invasive process. (ii) The 3D exploded view of the rigiflex PM-TENG against the sphere-shaped object showing 
the displacements of the steel pillars and the deformation of the membrane. (b) The 3D exploded view of the rigiflex PM-TENG against single level (i), dual levels (ii), 
triple levels (iii). (c) The sensing signals corresponding to single level, dual levels, and triple levels illustrating shape-related variations during the sensing process. (d) 
The sensing signals for two levels at various frequencies (0.1, 0.2, 0.4, 0.5, and 1 Hz). (e) The sensing signals corresponding to different objects. 
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based on the sensing process when dealing with the multilevel shaped 
objects, as there exists a time interval between these layers. The corre-
sponding sensing signals for single-level, dual-level, and triple-level are 
illustrated in Fig. 3c. The sensing peaks are observed to be sequentially 
generated, indicating the multilevel contact patterns in the time domain. 
Notably, the number of peaks corresponds to the level numbers within 
objects, while objects with continuous and uniform shape exhibit only a 
single peak. This means that a single-level structure will produce one 
peak, a dual-level structure will produce two peaks, and a triple-level 
structure will produce three peaks. The number of peaks corresponds 
to the number of discontinuous layers. Consequently, the number of 
signal peaks serve as an effective means to distinguish the objects with 
multilevel and noncontinuous shapes, whose variation arises from the 
differing contacting surfaces associated with single-/dual-/triple-level 
structure. We further explore the impact of frequency on sensing signals, 
as depicted in Fig. 3d. Our primary focus is on the sensing signals for the 
dual-level shaped objects at varying frequencies (0.1, 0.2, 0.4, 0.5, and 
1 Hz). As the contact frequency escalates from 0.1 to 1 Hz (with a 
contact-separation distance of 86 mm), the peak value rises from 251 to 
503 nA. Additionally, the disparity between the two sensing peaks 
gradually decays, attributed to the more transitory contact between the 
two levels in the objects with the increasing contact frequency. 

Notably, similar to the signals associated with objects of multilevel 
structures, those objects of continuous and uniform shapes also encap-
sulate a wealth of temporal shape information. However, the key 
distinction lies in the manner these temporal signals are presented: 
while they are entirely distinct for multilevel structured objects, they are 
superimposed for those of continuous shape. Fig. 3e illustrates the 
sensing signals corresponding to various continuous-shape objects. 
Although it is not possible to discern individual objects from these sig-
nals directly, the intricate details of each object are evident within the 
time domain of the sensing signal (Fig. S10). A comparative analysis of 
the signals from different shapes reveals that an object’s curvature 
directly influences its signal reduction speed; objects with greater cur-
vature exhibit slower signal decay. Thus, the dynamic sensing capabil-
ities of an object by the rigiflex PM-TENG, irrespective of the target 
shape, are manifested in its signal reduction rate (crucial for subsequent 
characteristic extraction by ML method). 

2.3. Data processing and classification performance via machine learning 

Machine learning technique serves as an effective method for 
addressing classification problems characterized by complex input sig-
nals. It facilitates the automatic extraction of features from the datasets 
using specific algorithms, such as principal component analysis (PCA), 
locally linear embedding (LLE) to enhance subsequent object recogni-
tion [55,56]. The aforementioned research underscores the ability of the 
proposed rigiflex PM-TENG to discern detailed and rich information 
about objects. In the following study, we employ a shape-related signal, 
augmented by machine learning, for object classification. We have 
selected nine objects of varying shapes for identification, recording the 
triboelectric outputs from the contact process involving triangular 
prisms, hexagonal prisms, pyramids, spheres, cylinders, cones, sin-
gle-/dual-/triple-leveled shapes. Current recognition strategies for 
triboelectric outputs predominantly analyze intricate features within a 
single waveform, such as frequency, hold time, latency, and peak gaps. 
This approach fails to recognize complex features with subtle differences 
and is highly sensitive to environmental variations, leading to dimin-
ished recognition accuracy. To solve these problems, our approach le-
verages a minimalistic sensor that captures rich temporal characteristics 
during the contact process. This provides ample features before auto-
matic extraction using machine learning. Consequently, raw data from a 
dynamic contact process—including contact position, force, speed, area, 
and sequence—can be input into the training model. 

Among various ML methodologies, the artificial neural network 
(ANN) stands out as a highly effective supervised learning model used 

for classification tasks [2,25]. It has been proposed for use in analyzing 
triboelectric output signals with superior performance. The ANN model 
presents a promising and practical solution for time-domain sensor data 
analysis. Consequently, we have constructed a custom ANN-based ana-
lytic system to facilitate object classification (Fig. S11, Table S1). As 
depicted in Fig. 4a, we have designed a four-layer ANN model 
comprising an input layer, two hidden layers, and an output layer. The 
input layer corresponds to the sensor data with time sequences, while 
the output layer corresponds to the true labels of objects with diverse 
shapes. Each sample’s sensor data length is 2000. In this process, sensor 
data from nine objects of varying shapes—including triangular prism, 
hexagonal prism, pyramid, sphere, cylinder, cone, single-/-
dual-/triple-leveled objects—are collected accordingly by repeating 
approaching, contact, and partially entering motions. Notably, the 
contacting position of each test may vary slightly, ensuring that the data 
collection process closely aligns with real-world scenarios. We directly 
utilize the raw current data in time domain of rigiflex PM-TENG as 
sample features, resulting in 2000 features for each sample. Each feature 
represents one data point in the time series during the contact process. 
To ensure the reliability of the dataset during data collection, each ob-
ject is tested 200 times. The 1800 samples across nine categories are 
then randomly divided into two groups: training samples (80 %) and 
testing samples (20 %). 

Fig. 4b illustrates the typical triboelectric outputs from contacting all 
nine objects at varying frequencies (0.1, 0.2, 0.4, 0.5, and 1 Hz). These 
results are distinct from other reported devices that utilize dense resis-
tive sensors arrays and employ ANN to evaluate the mapping of the 
static sensing signals during object contact activities. In contrast, the 
proposed rigiflex PM-TENG device with a minimalistic sensor in-
corporates information from the integral and dense sensing pillars, more 
emphasizing the investigation of the dynamic changes throughout the 
entire contact cycle. Initially, the multiple steel pillars of rigiflex PM- 
TENG are aligned. As the object of specific shape interacts with these 
steel pillars, the corresponding forced steel pillars adaptively displace 
following the shape of the target object. Eventually, the shape of the 
dense steel pillars aligns well with the object’s shape, indicating that the 
rigiflex PM-TENG can readily replicate and detect the object’s specific 
shape. The target object’s shapes result in different displacement states 
for each steel pillar, generating dissimilar waveforms to distinguish 
different objects. 

According to the above discussions, the triboelectric output signal 
effectively reflects the temporal variations in the contact area between 
the object and the multiple steel pillars, specifically, the curvature of the 
object. This is crucial for achieving accurate object recognition. Due to 
the substantial dimensions of acquired data samples, each sample con-
sists of 2000 elements. To extract the features and reduce data di-
mensions, we utilize the PCA method, employing a kernel function as the 
linear function. The minimum proportion threshold of the variance sum 
of the principal components (referred to as n_components) is set at 0.99. 
This adaptive determination of the number of dimensions to be reduced 
ensures that the processed data retains at least 99 % of the original 
sensor data information. 

The recognition accuracy is mainly affected by the data discrepancy 
among different labels and the constructed ML model. Similar sensing 
signals may lead to probable misrecognition on the target objects. In 
order to compare the performance of different ML models based on the 
rigiflex PM-TENG sensor data to further optimize the capacity on object 
recognition, we have also constructed a support vector machine (SVM) 
model (Table S2) [59], which is another widely utilized machine 
learning method. Generally, the SVM model demonstrates superior ac-
curacy in recognizing small datasets rich in distinguishable features. 
Conversely, the ANN model typical excels when handling large amounts 
of data with similar patterns due to its ability to automatically extracting 
significant features. Within the SVM model, two parameters play a 
crucial role in determining the appropriate model: the penalty coeffi-
cient C and kernel coefficient gamma (γ). These coefficients are used to 
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assess the potential for misclassification. The confusion maps for the 
optimized SVM model and the optimized ANN model are illustrated in 
Fig. 4c and d, respectively. The proposed ANN model demonstrates a 
significant improvement over the SVM model, assisting rigiflex 
PM-TENG to achieve an accuracy of 96.39 % in object recognition using 
only 360 training samples (Fig. 4d). In contrast, the SVM model only 
achieves an accuracy of 87.5 % (Fig. 4c). This disparity is attributed to 
the superior suitability of the ANN model (better than SVM model) for 
our specific object classification task based on the rigiflex PM-TENG 
sensing data. Our experimental results suggest that both the recogni-
tion models developed from ANN and SVM methods perform satisfac-
torily. However, the proposed ANN model outperforms the SVM model, 
indicating its suitability for our problem domain. Given the advanced 
automatic feature extraction capabilities of the ANN method, the pro-
posed rigiflex PM-TENG only necessitates a relatively simple network to 
achieve high performance. 

Notably, the accuracy is mainly affected by the data discrepancy 
among different labels. The more similar the data, the more likely it is to 
be confused. Besides, a limited number of classes exhibit relative lower 
accuracy, such as the 92.7 % accuracy for hexagonal prisms in the ANN 
model (Fig. 4d). This indicates two hexagonal prisms incorrectly clas-
sified as “cylinder” and one hexagonal prism erroneously identified as 
“triangular prism”. Upon examining the structures of these objects and 
the triboelectric output patterns depicted in Fig. 4b and Fig. S10, several 
similarities emerge. The triangular prism, hexagonal prism, and cylinder 
all possess characteristic features of typical prisms; however, their pri-
mary structural difference lies in curvature. Varying curvatures lead to 
dynamic changes in the contacting area and force, resulting in the dis-
crepancies in peak values and the signal reduction speed. Abnormalities 
in these parameters can lead to incorrect judgments. Therefore, during 
the data collection phase, augmenting the sample population and 
adjusting the contacting force are effective strategies to ensure the 

Fig. 4. Triboelectric output-based object recognition leveraging machine learning technique. (a) Schematics of the process and parameters for constructing the ANN 
model. (b) Triboelectric outputs corresponding to different objects. (c-d) Confusion maps of object recognition derived from two models made by SVM (c) and ANN 
(d) with 360 test samples. Predicted label refers to the recognized result, and true label refers to the true object. A, B, C, D, E, F, G, H, and I represent triangular prism, 
hexagonal prism, pyramid, sphere, cylinder, cone, single-level, dual-levels, and triple-level shapes, respectively. 
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model stability, even when irregular signals are present. Additionally, 
modifying the contact position is crucial for enhancing the model’s 
generalization capability. The parameter optimization process of ANN 
model is shown in Fig. S12-14. 

2.4. Real-time object recognition system 

To demonstrate the potential of the proposed rigiflex PM-TENG for 
practical applications, we present a real-time object recognition system 
capable of facilitating real-time monitoring in a cameraless environ-
ment. Upon analyzing the recognition outcomes, additional advanced 
functionalities can be incorporated, such as intelligent sorting and 
remanufacturing of incorrect products. The rigiflex PM-TENG offers an 
energy-efficient solution for components recognition in unmanned 
warehouses. Thus, capturing sufficient information to differentiate 
various objects becomes crucial for implementing these applications.  
Fig. 5a illustrates the process flow for establishing this real-time system. 
During the training phase, signals derived from rigiflex PM-TENG 
against different objects are collected to form a comprehensive dataset 
with numerous samples. These time domain signals are then normalized 
to expedite convergence in the gradient descent algorithm. These 

normalized feature vectors subsequently serve as inputs for constructing 
object feature models using supervised learning techniques, specifically 
PCA and ANN. For real-time identification, a comparable procedure is 
employed, where real-time signals are directed into the trained ANN 
model for decision-making. This ANN model leverages a tailored clas-
sification algorithm adapted from the Sklearn library, striking an 
optimal balance between computational complexity and prediction ac-
curacy. It is well-suited for scenario involving a large number of objects 
and allows for theoretical analysis through a precise probability model, 
mitigating the risk of overfitting in training sets. 

Upon training with the ANN model, a real-time object recognition 
system is realized, as illustrated in Fig. 5b (see also Movie S1). This 
system presents both the real-time signals (indicated by black dashed 
boxes) and the corresponding predicted images of the objects (high-
lighted by red dashed boxes). During operation, objects are randomly 
chosen for testing; subsequently, these objects are recognized by the 
trained ANN model based on the input signals obtained from rigiflex PM- 
TENG. Although our focus is solely on the construction of a real-time 
object recognition system, this demonstration underscores the poten-
tial of employing this comprehensively designed rigiflex PM-TENG to 
facilitate advanced multipurpose operations. An analysis of the 

Fig. 5. Real-time object recognition system. (a) The process flow of the proposed object recognition system combined with the classification algorithm. The principal 
component analysis (PCA) is implemented to extract the data feature for ML training based on the ANN model. (b) Real-time object recognition system. The screen 
displays both the real-time signals and the corresponding predicted object’s picture. 

Y. Xiong et al.                                                                                                                                                                                                                                   



Nano Energy 129 (2024) 109956

9

predicted outcomes suggests that it could potentially enhance intelligent 
manufacturing, sorting, and production line management. Furthermore, 
the application of object recognition technology can significantly 
streamline the entire process. 

3. Conclusion 

In conclusion, we have successfully demonstrated the utilization of 
rigiflex PM-TENG for universal stereoscopic recognition by leveraging 
ML technique. The rigiflex PM-TENG employs an integral and mini-
malistic structure to generate dynamic sensing signals in time series, 
providing rich and detailed information on stereoscopic structures. The 
employed rigid μm-scale steel pillar structure can readily reflect the 
stereoscopic shape of the objects, as indicated by the corresponding 
displacements of steel pillars, there enabling high-fidelity object 
sensing. The flexible membrane allows the rigid steel pillars to revert to 
their initial state, facilitating repeated experiments. By integrating the 
benefits of both the rigid steel pillars and the flexible membrane, the 
proposed rigiflex PM-TENG encompasses information from multiple 
sensing pixels and emphasizes of the study of dynamic changes 
throughout the entire contact cycle. Furthermore, a real-time object 
recognition system has been established with an object recognition over 
nine categories at an accuracy of approximately 96.39 % by using four 
layers of the ANN model, which can be further applied to assembly lines 
for production control management in next-generation smart factories 
and unattended warehouse’s workshop management. This introduced 
self-powered recognition system holds significant potential as it offers a 
cost-effective and power-efficient solution for future intelligent inter-
action and manufacturing processes. As 5 G communication and IoT 
applications continue to revolutionize human life in various aspects, 
such device can enhance machine intelligence based on the big data 
obtained from AI techniques. 

Given these advanced capabilities, the rigiflex PM-TENG is poised to 
revolutionize object recognition tasks across multiple scenarios. The 
rigiflex PM-TENG, with its unique integration of rigid pillars and flexible 
membranes, presents a transformative approach to object recognition, 
applicable across a diverse range of industries. In smart manufacturing, 
for instance, these sensors could be integrated into robotic arms to 
enhance the precision and efficiency of automated production lines by 
enabling the robots to identify and sort materials based on their texture 
and shape. This capability not only minimizes human error but also 
boosts production throughput. Similarly, in quality control, rigiflex PM- 
TENG can detect minute defects or irregularities, ensuring high product 
quality and customer satisfaction, although it requires careful calibra-
tion to avoid false positives. In healthcare, embedding these sensors in 
prosthetic devices could significantly enhance the functionality by 
providing tactile feedback, thus improving the quality of life for users, 
albeit demanding rigorous safety testing. Additionally, in educational 
settings, these sensors could be used in interactive displays to provide 
tactile feedback that enriches learning experiences. Moreover, in secu-
rity systems, rigiflex PM-TENG could add a sophisticated layer of 
physical security by detecting unique identifiers, enhancing security 
while raising concerns about privacy. Each of these applications presents 
its own set of challenges, including integration with existing systems, 
environmental adaptability, and user acceptance. These issues must be 
carefully considered to fully exploit the potential of this groundbreaking 
technology. 

4. Experiments 

4.1. Fabrication of the rigiflex PM-TENG 

For the systematic design of the rigiflex PM-TENG, commercial steel 
pillars (diameter: 500 μm, height: 30 mm) are selected as the dense and 
unconventional pixels, and the nitrile rubber is selected as the flexible/ 
elastic membrane material, with its four sides stuck on the Al tape 

electrode. First, plastic support plate and Al tape electrode are punched 
to plate with densely aligned holes using a laser-engraving machine. 
Subsequently, the steel pillars are insert into the corresponding pixel 
holes on the support substrate. Next, the four sides of the flexible 
membrane are stuck on the Al electrode. Through fixing bolts, the 
support substrate, Al electrode and acrylic baffle are fixed. 

4.2. Electrical output measurement 

To characterize the output properties of the rigiflex PM-TENG, the 
contact-separation action is applied by a commercial linear mechanical 
motor. ISC, VOC, and QSC are measured by an electrometer (Keithley 6514 
system). A custom LabVIEW program is used to record the electrical 
output. In terms of the output voltage, current and power characteristics 
versus the external load resistance, the output voltages on different loads 
are measured by a Keithley 6514 Electrometer connected in parallel. 
Then the peak power on the corresponding external load resistance is 
calculated using the formula P = V2/R, where P, V, and R are the peak 
power, output voltage, and resistance of the resistor load, respectively. 
As for the capacitor charging, the voltages on different capacitors are 
also measured using the Keithley 6514 electrometer in parallel 
connection with the capacitors. Analog current signals generated from 
the rigiflex PM-TENG for real-time object recognition are collected by 
the Keithley 6514 electrometer. Finite element method simulation of 
electric potential between two triboelectric layers (polytetrafluoro-
ethylene film covered on object and steel pillars) are numerically 
simulated using the commercial software COMSOL. 

4.3. Data collection and ML training model 

The generated triboelectric signals from the rigiflex PM-TENG are 
acquired by the Keithley 6514 electrometer. In terms of the training data 
for object recognition, the signal data from each channel is recorded 
with 2000 data points and 200 samples are collected for each object. A 
whole dataset is built from 9 objects with various shapes with a total 
number of 1800 samples. 80 % of the dataset is used for training samples 
while the rest 20 % is used for test samples. The ANN models used in the 
system are configured as follows: the categorical cross-entropy function 
is applied as the loss function, adaptive moment estimation (Adam) is 
used as the update rule due to its optimization convergence rate; the 
sigmoid function is used as activation function, and prediction accuracy 
is used to evaluate the model training. Hyperopt library is applied for 
serial and parallel optimization on the search space. The ANN models 
are developed in Python with a Sklearn backend. The feature-based 
models are trained on a standard consumer-grade computer. 

4.4. The architecture and training process of ANN 

A four-layer ANN model is constructed, including input layer, two 
hidden layers, and output layer. The input layer corresponds to the 
sensor data with time sequences, and the output layer correspond to the 
true labels of objects with various shapes. The four layers are fully 
connected via weights. During the training process the weights will be 
updated via the back-propagation (BP) algorithm whose main idea is to 
pass the output errors back to the input layer through the hidden layer. 
By updating the weight of each unit layer by layer, the network output 
error can be reduced to an acceptable level through error back 
propagation. 

When the sensor data arrives at the input layer, the obtained input 
vector reaching the first hidden layer (hi1) is the matrix product of the 
input sensor data vector (V) and the random initialized weight matrix 
(W): 

hi1 =
∑n

i=1
wivi 
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The input vector of the first layer (hi1) is then transformed to the first 
hidden layer output vector (ho1) via a sigmoid activation function (ho1=

f (hi1)): 

ho1 =
1

1 + e− hi1 

The first hidden layer output vector (ho1) continues to propagate 
forward through the weights (Wh1) connected with the output neurons: 

hi2 =
∑n

i=1
wh1iho1i 

Similarly, the second hidden layer output vector (ho2) can be ob-
tained from the input vector of the second layer (hi2) via a sigmoid 
activation function (ho2= f (hi2)): 

ho2 =
1

1 + e− hi2 

Then the output vector (Y) can be obtained through the activation 
function (Y = f (ho2)): 

Y =
1

1 + e− ho2 

By comparing the difference between the output value (y) of the 
output vector and the label value (k) of the input sensor data, ΔW is 
calculated with the gradient descent method. In this way, all the weights 
in each layer are updated until the network error meets the precision 
requirement which is determined by the defined loss function. 

4.5. The principle of multi-class SVM 

The SVM is originally designed for the two-class (binary) classifica-
tion. Harnessing the one-against-rest strategy, the two-class SVM is 
extended to multi-class classification. By switching the customized 
classifier from the two-class mode to the multi-class mode, the model 
can serve for more complicated classification and achieve richer func-
tions. One versus rest strategy, one of the multi-class SVM algorithms, is 
used to classify all the objects. the classification function is constructed 
between one class and rest classes. In the training process, samples of a 
certain class are classified into one class with positive labels, and the rest 
samples are classified into another class with negative labels; hence the 
samples of k categories construct k SVMs. The sample to be predicted is 
classified into the class with the largest classification function value. In 
predicting process, the class with the largest classification-function 
output will be selected as a prediction class. The specific classification 
steps are as follows: (1) Pick out all the training samples of object1 in the 
object database. (2) Set the samples of object1 as positive labels and set 
the rest training samples of other object as negative labels, then use all 
samples labeled positive and negative as an input to train the SVM1. In 
this way, the corresponding SVM1 and corresponding classification 
planes are figured out. SVM1 is used for differentiating object1 from the 
remaining gestures. (4) Repeat the above steps until the SVM against all 
the classes are constructed. And we can obtain 9 SVMs: SVM1, SVM2, …, 
SVM9, and 9 classification planes are obtained. (5) In predicting process, 
the corresponding test vectors are fed into the 9 training SVM, and ac-
quired a result of f1(x), f2(x), …, f9(x), respectively. Finally, the class 
with the largest classification-function output will be selected as a pre-
diction class. 
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