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A B S T R A C T

Embodied Artificial Intelligence (EAI) enables robots to autonomously learn through complex interactions with 
the external world, enhanced by integrated speech and vision capabilities for effective communication with 
users. In contrast, human learning initially occurs without speech, where gestures function as a potent educa-
tional instrument and a vital communication mode. This work presents a type of smart glove that utilizes 
triboelectric nanogenerators (TENGs) and is specifically engineered to function as an advanced teaching interface 
for EAI (Ti-EAI) in facilitating interactions between humans and robots. The Phalanges-based Triboelectric 
Sensor (PTS) boasts a segmented design that conforms to finger movements, thereby minimizing sensor inter-
ference and guaranteeing natural motion. A linkage mechanism featuring a double-layer electrode design with a 
phase difference has been integrated to optimize signal outputs and enrich the gesture information embedded 
within the signals. Within the Ti-EAI system, the human operator utilizes PTS-enabled gloves as an instructional 
medium to systematically impart directives and knowledge to the robots. This configuration significantly en-
hances the robot’s ability to perceive environmental subtleties by leveraging gesture-based communication, 
improving its intrinsic intelligence. The Ti-EAI system enables robots to autonomously recognize gestures, 
engage in logical interactions through subjective actions, and sustain a continuous dialogue through the utili-
zation of a large-scale model. Notably, the findings from this system illustrate substantial progress in EAI, thereby 
broadening its application scope within humanoid robots and facilitating a deeper integration into diverse daily 
life contexts.

1. Introduction

Embodied Artificial Intelligence (EAI), a crucial subfield of artificial 
intelligence, endeavors to attain brain-like capabilities via active 
perception utilizing multiple sensors, long-term simulation facilitated by 
integrated algorithms, and continuous improvement throughout 

interactions[1–3]. This approach implies that autonomous learning can 
progressively enhance sensory and cognitive abilities[4,5]. For robots, 
the physical manifestations of embodied artificial intelligence (EAI), 
developing perception, comprehension, and interaction capabilities 
necessitates external assistance, primarily facilitated through acquiring 
sensory information and applying machine learning techniques[6–9]. 
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Despite significant advancements over the years, the intelligence 
exhibited by current EAI systems remains markedly inferior to human 
levels, underscoring the imperative for further research to comprehen-
sively understand human cognition and develop systems capable of 
emulating these intricate cognitive processes[10,11]. Human cognitive 
development is a multifaceted and protracted process that inherently 
encompasses auditory perception and stimulation, the acquisition of 
linguistic competence, visual discrimination, and observation, as well as 
the imitation of actions and behaviors[12,13]. Humans, initially devoid 
of innate linguistic abilities, primarily engage with their surroundings 
through gestures and prelinguistic vocalizations from teaching, pro-
gressively acquiring sophisticated communication abilities over time via 
exposure to linguistic inputs and social interactions[14]. Constructing a 
Teaching interface for EAI (Ti-EAI) with advanced sensing technologies 
is therefore essential for assessing and enhancing robot intelligence, as it 
enables robots to achieve a deeper understanding of complex concepts 
and tasks while allowing users to act as educators[15,16].

To seamlessly augment the robot’s cognitive capabilities within the 
TI-EAI, data gloves can be employed to precisely capture the educator’s 
hand movements. The integration of advanced sensors, such as bending 
sensors[17–20], inertial measurement units (IMUs)[21,22], and force 
sensors[23], significantly enhances human-robot interaction. However, 
traditional sensors face limitations, particularly in scenarios requiring 
prolonged operation, due to their reliance on external power sources. To 
overcome these challenges, novel self-powered sensors are being 
developed, with triboelectric sensors offering diverse material options 
and flexible structural designs[24–33]. In recent years, numerous 
research articles have reported advancements in triboelectric nano-
generators (TENGs) for smart gloves, thereby expanding their applica-
tion range. For instance, Fang et al. introduced a starch-based hydrogel 
sensor with multimodal sensing capabilities[34]. By utilizing 
strain-sensing gloves to capture finger flexion signals, remote 
human-machine operation can be achieved. Xiong et al. integrated 
flexible sensors into textile gloves, designing a recognition system that 
serves as an interactive interface and can perform rescue tasks in haz-
ardous situations when combined with lidar[35]. Additionally, Zhang 
et al. utilized 3D-printed smart sensing gloves for gaming, enabling 
gesture-based control for smart home systems[36]. However, with the 
emergence and development of EAI, human understanding of intelli-
gence levels continues to evolve. These sensing gloves often lack the 
capability to interpret genuine human intentions and fail to accurately 
map complex hand movements[37–40]. Therefore, designing tribo-
electric sensors that accommodate joint and inter-joint activities can 
effectively convey authentic information, aiding in the decoupling of 
intricate dynamic gestures. Furthermore, many researchers have 
employed artificial intelligence (AI) methods to deepen the under-
standing of sensing mechanisms[41–44]. The integration of flexible 
triboelectric sensors with machine learning algorithms, particularly 
neural networks, facilitates effective real-time data analysis, thereby 
further refining the development of embodied agents[45,46].

To enhance human-machine interaction capabilities and empower 
embodied agents to elevate their intelligence through imitation of 
human behavior, this paper introduces an innovative Phalanges-based 
Triboelectric Sensor (PTS), which is meticulously designed to conform 
precisely to the three-stage joint flexion structure of the human finger 
and incorporates triboelectric nanogenerators (TENGs) to construct self- 
powered sensing channels. By digitizing the flexion states, the PTS 
employs a multi-channel differential electrode design to accurately 
capture various bending angles and flexion/extension states of finger 
joints, thereby facilitating advanced artificial intelligence analysis with 
human teacher gesture inputs. This theoretical framework enables the 
differentiation of multiple joints within a single finger and the recog-
nition of similar gesture movements via smart gloves equipped with 
PTSs. The signal amplification, influenced by variations in phase, 
amplitude, and peak counts between upper and lower circuits, generates 
multidimensional signals that support dynamic and static interactions, 

allowing for precise action prediction when integrated with deep 
learning algorithms. Furthermore, the integration of large-scale model 
technologies and Unity3D vision-design capabilities enables the trans-
mission of the operator’s cognitive intentions to the robotic system, 
thereby achieving a form of “remote brain-to-robot connectivity.” 
Together with gesture and voice recognition technologies, this system 
progressively acquires capabilities for communication, logical 
reasoning, and interactive gaming, evolving into a comprehensive 
intelligent entity.

2. Results and discussion

2.1. Concept and design of a robotics teaching platform

As exemplified in Fig. 1, this research presents an intelligent glove 
designed to serve as an interface for Embodied Artificial Intelligence (Ti- 
EAI). Specifically, Fig. 1a portrays a scenario in which a human donning 
the intelligent glove functions as an instructor for a robot, creating an 
autonomous teaching interface that facilitates the robot’s accurate 
imitation of human actions. The primary objective of TAI is to augment 
the robot’s embodied intelligence, empowering it to independently 
execute tasks encompassing gesture recognition, interactive actions, and 
sustained dialogue.

The glove is equipped with the Phalanges-based Triboelectric Sensor 
(PTS), which employs a freestanding triboelectric nanogenerator to 
produce electrical signals through friction between materials with 
differing electronegativities (Fig. 1b). To ensure unimpeded hand 
movement, as illustrated in Fig. 1c and S1, the PTS is engineered to 
conform to the three-segment bending structure of the fingers and is 
mounted on the glove’s outer surface, facilitating rapid attachment and 
detachment. The information outlined in Table S1 reveals that our 
proposed PTS achieves broad functionality with a simplified design and 
common materials, marking a substantial advancement when juxta-
posed with prior works. By incorporating an innovative dual-layer 
electrode design, the sensor transcends mere directional signal acquisi-
tion, integrating novel data pathways that enrich the dataset for deep 
learning-based gesture recognition. Similarly, through integration with 
large language models, our smart glove surpasses the limitations of basic 
gesture recognition, enabling complex logical interactions, real-time 
adaptability, and voice communication capabilities, thereby establish-
ing a new benchmark for gesture recognition performance. Further-
more, the integration of Bluetooth Low Energy (BLE) technology 
facilitates efficient and reliable remote wireless data transmission. Pre-
sented in Figure S2, our design encapsulates a wide array of advanced 
benefits, making it highly versatile for real-time applications.

2.2. Design, preparation, and principles of the PTS

The design details of the PTS are illustrated in Fig. 2a, and the 
different colors in Fig. 2a(i) indicate the required friction materials. As 
depicted in Fig. 2a(ii), for the mobile end, EVA foam tape is double-sided 
and adhered to a PVC film, which is then laser-cut into small compo-
nents matching the joint length to form a supportive framework. Copper 
foil electrodes of varying widths are attached above and below this 
framework (Figure S3). In addition, the lightweight construction (only 
3.28 g) allows for closer contact between the glove and the fingers, 
reducing unnecessary friction and pressure, thus avoiding the discom-
fort that may be associated with prolonged wear (Figure S4). For the 
fixed end of the pipeline, an FEP film covers the interdigital electrodes as 
a critical friction material. As shown in Fig. 2a(iii), utilizing the 
segmented design of the finger joints drives the linkage structure to slide 
within the pipeline of the fixed end. Except for the thumb, the entire 
mobile end is 1.5 centimeters wide (slightly wider than the finger) to 
prevent interference between adjacent fingers. The fixed end of the 
pipeline is based on a width of 1.5 cm, with a slightly wider pipeline 
formed by a PET ring structure employing an arched design. The longer 
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FEP bends inward at the junctions between adjacent electrodes, thereby 
increasing the contact area with the mobile end and preventing signal 
discharge. The design facilitates smooth sliding of the mobile end within 
the confines of the fixed end, ensuring a seamless and efficient opera-
tional mechanism.

Fig. 2b(i) displays the schematic that has been produced, depicting a 
transparent PVC strip linked to the glove’s exterior at the fingertip. The 
primary section is partitioned into three segments, as seen in Fig. 2b(ii): 
1) The mobile end is the part that moves along with the joint. 2) The 
horizontal end is the part that glides into contact with the interdigital 
electrodes. 3) The fixed end is the part of the pipeline that remains 
stationary at the joint. The different lengths of the movable end enable 
the attachment to bend as the joint moves downward and prevent any 
blockage when the finger extends. The intrinsic interaction between the 
finger joint and the segmented construction causes the final segment to 
slip within the finger-attached pipeline. The position of the final 
segment within the fixed pipeline may be determined by employing the 
TENG method. The beginning point for interdigital electrode insertion in 
the pipeline is the leftmost end, located near the palm. It eliminates any 
contact irregularities the segmented joint construction may produce.

An intuitive understanding of the output mechanism of the TENG is 

provided through the overlapping electron cloud (OEC) model. As 
depicted in Fig. 2c, varying interaction potentials occur between two 
contacting objects depending on whether they are at the equilibrium 
position, in the repulsive zone, or in the attractive zone. Fig. 2d illus-
trates two scenarios: initially, before atomic-scale contact between the 
two materials (in the attractive zone), their respective electron clouds 
remain separate without any overlap. As the contact area increases, the 
electron clouds begin to overlap (in the repulsive zone), transforming 
the initial single potential well into an asymmetric double potential well, 
enabling the transfer of electrons between the two atoms. On the basis of 
this, the finger flexion state sensing functions by utilizing the opera-
tional principle of a freestanding triboelectric-layer mode TENG. Charge 
transfer transpires across the external circuit as a result of disparities in 
the contact area within the system. Fig. 2e shows the segmentation of the 
electrodes into A-Phase and B-Phase. The difference in electronegativity 
between copper and FEP causes the formation of positive charges on the 
surface of copper, resulting in the achievement of equilibrium in stage 
(i). Upon the lateral displacement of the triboelectric layer towards the 
right (spanning from stage i to iv), positive charges migrate in a leftward 
direction, inducing a temporary flow of current within the external 
circuitry. Attributable to the expanded contact interface inherent to the 

Fig. 1. Robotic Intelligent Education System Based on Intelligent Sensing Gloves. (a) By wearing smart data gloves, it is possible to construct an educational interface 
to realize the robot’s imitation of human movements. (b) Detailed view of a freestanding triboelectric-layer mode sensor based on the difference in electronegativity 
of the friction material that generates signal output. (c) Rendering of a hand wearing a smart glove. The sensor is designed to satisfy the three joint bending structure 
of the fingers.
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B-Phase, the process of charge transfer is expedited, achieving a novel 
charge equilibrium as early as stage iii. In stark contrast, the A-Phase 
achieves full charge transfer only upon perfect alignment, demon-
strating an elongated charge transfer period. Conversely, during the 
reverse sliding motion from stage iv back to i, there is an absence of 

charge transfer between stages iv and iii, leading to a delayed initiation 
of the B-Phase in comparison to the A-Phase. Nevertheless, upon the 
concurrent alignment of the left termini of both components, the voltage 
returns to a zero potential simultaneously, generating a phase disparity 
that originates from their differing commencement times. This 

Fig. 2. The construction and operational principles of the sensor. (a) Depicts the fabrication process of the wearable sensor peripheral equipment for capturing hand 
movement gestures. (b)A rendering and its structural schematic: 1) Mobile end; 2) Horizontal end; 3) Fixed pipe end. (c)The interaction energy of two atoms in 
different regions. (d)The overlapped electron-cloud model. (e)Elucidates the working principle of the multi-channel design sensor based on freestanding triboelectric- 
layer mode TENG.
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meticulously engineered phase difference significantly enhances the 
recognition capabilities of our apparatus, establishing a robust founda-
tion for highly efficient gesture recognition and real-time interactive 
capabilities.

2.3. Differential amplification circuit and dual channel phase difference 
principle

Triboelectric signals are commonly defined by their small magnitude 
and vulnerability to external disturbances and electromagnetic 

interference. Simultaneously, it is crucial to have a design that includes 
high input impedance, broad bandwidth, and low power consumption to 
guarantee precise amplification and steady transmission of the signal. To 
enhance the signal’s resistance to interference and efficiently reduce 
common-mode noise, a dual operational amplifier (LM358P) is used for 
the differential design. Fig. 3a displays the circuit diagram of the signal 
processing circuit. The power supply module comprises a portable bat-
tery box and three series-connected 1.5-volt batteries. To meet the 
single-supply requirement, a DC bias is added to the generated sinu-
soidal AC signal to achieve the positive half-axis voltage. A voltage 

Fig. 3. Signal Processing and Analysis. (a) Schematic of differential signal amplification and filtering based on dual op amps (LM358P). (b) Amplified signal 
characterization (one complete cycle). (c) Voltage values for different electrode widths. (d) Voltage values for horizontal (i) sliding to the left (ii) sliding to the right. 
(e) Enlarged view of the slow sliding of the plane (i) to the left (ii) to the right. (f) Setting the threshold for converting (e) into a square wave.
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divider resistor is combined with a differential amplifier to establish a 
continuous input voltage difference higher than zero. This arrangement 
is designed to increase the amplitude of the signal and then remove 
unwanted noise by utilizing an RC filter. The calculating formula is 
demonstrated in Equation S1. A consistent positive signal output may be 
achieved by considering the virtual short-circuit and virtual open-circuit 
characteristics.

The act of bending and releasing represents a complete action cycle. 
As depicted in Fig. 3b, the original AC signal is offset by approximately 
0.6 V, resulting in unique waveforms containing both positive and 
negative cycles, which are suitable for further investigation. The 
arrangement of electrodes over a surface can generate different levels of 
electric charge. The stationary end is securely attached to a smooth 
tabletop to evaluate the sensor’s performance. When comparing the 
sensor output for three different electrode widths (as shown in Fig. 3c), 
voltage is increased from less than 1.5 V to around 3 V as the contact 
area becomes more extensive. To achieve accuracy in manufacturing 
and responsiveness to manual tasks, an electrode width of 1.5 cm is 
used, except for the outer portions of the thumb. This choice reduces the 
effects of mutual interference between finger peripherals and guarantees 
a greater voltage output. Due to the thumb’s increased autonomy, 
greater separation from the other fingers, and restricted range of joint 
movement, a larger region is selected to address minor discrepancies 
efficiently.

The signal processing pathway is created based on the principles 
mentioned above. Data is collected by sliding a single finger horizontally 
in both directions to evaluate the performance of the two-way signal. 
Fig. 3d illustrates gathering a two-way signal that displays variations in 
both amplitude and phase. To provide more elucidation, the sampling 
frequency is decreased, and the waveforms are scrutinized. The initial 
waveforms of leftward and rightward sliding are depicted in state(i) and 
state(ii) of Fig. 3e, respectively. When a sinusoidal signal is processed by 
a comparator at typical transistor-transistor logic (TTL) levels, it is 
transformed into a stable square wave signal without any changes to its 
phase and frequency properties. To replicate the functional imple-
mentation of the comparator, a threshold is created in Python to convert 
the sine wave with DC bias shown in Fig. 3e into three square waves. 
Once the voltage exceeds a predefined upper threshold, the comparator 
output is set to 1. Conversely, if the voltage falls below a predefined 
lower threshold, the output is adjusted to − 1. For voltage values that fall 
within the range between these two thresholds, the comparator output 
remains at 0. The distinction between the left and right directions can be 
made by examining the correlation between the signal edges and levels 
shown in Fig. 3f. Figure S5 presents a detailed portrayal of the dual- 
channel waveforms associated with an array of directional move-
ments. During the phase of forward motion, it becomes evident that both 
waveforms undergo same fluctuations, with disparities in their cyclical 
durations manifesting as varied times of attainment at the conclusion of 
the motion cycle. During the phase of reverse motion, the A-Phase ini-
tiates its change before the corresponding change in the other wave-
form. Notably, despite this sequential initiation, both channels’ 
waveforms reach a synchronized state at the zero potential position due 
to their left-aligned structure. This phenomenon is in accordance with 
the design principles previously elaborated upon in our discourse.

2.4. Experimental characterizations of the PTS

While traditional gesture recognition tends to focus on overall hand 
movements, examining the individual movement of joints separately 
from their synergistic effects can provide a more detailed data analysis, 
revealing additional details of the movements. It is established that the 
bending behavior of a single finger is primarily executed by the meta-
carpophalangeal (MCP), proximal interphalangeal (PIP), and distal 
interphalangeal (DIP) joints. The skeletal and articular structure of the 
fingers enables the PIP and distal DIP to coordinate with each other 
during natural flexion. In contrast to the attachment, the DIP is capable 

of functioning with greater independence. However, the realization of 
such gestures requires the assistance of the MCP. To reduce the 
complexity of the distinction, the approach considers PIP and DIP as 
common motion subjects, focusing on determining the influence of the 
MCP on this community. The finger’s flexion and extension are 
considered a complete cycle of motion, allowing for an analysis of the 
impact of frequency and angle on the resulting output. As observed in 
Fig. 4a and Figure S6, the output of the double-joint flexion process 
exhibits an increasing number of peaks as the angle is increased. The 
amplitude of the output remains relatively constant, primarily since a 
single operating frequency is controlled to achieve an output perfor-
mance that aligns with the free-standing mode. Fig. 4b depicts the 
sensor’s output voltage as a function of frequency for a fixed entire cycle 
of bending at 15 degrees. The output voltage exhibits an upward trend 
followed by a descending trend when the frequency ranges from 0.5 Hz 
to 2 Hz. The peak output value is achieved at a frequency of 1.5 Hz. 
Moreover, a higher frequency causes a decrease in the region where 
friction is effective, resulting in a reduction of friction performance. By 
combining the advantages of the design above, the two-way signal curve 
emerges under the synergistic change of frequency and angle (Fig. 4c). A 
comparison of the graphs under three different conditions reveals that 
the output amplitude is elevated as the frequency increases. While the 
bending angle increases, the number of peaks in the signal also in-
creases. This finding is consistent with the observations in Figs. 4a and 
4b. A more comprehensive understanding can be gained once the upper 
signal is considered the primary path and the lower signal is regarded as 
the phase-assisted directional perception. The discrepancy in the num-
ber of peaks observed in the two-path signal can be primarily attributed 
to its coverage area. Following the same curved route, the two sections 
will detect varying quantities of primary peaks (Fig. 4d). A linear rela-
tionship between the double-joint bending angle and the distance 
traveled can be observed when fitting the five fingers (Fig. 4e). Except 
for the thumb, which exhibited an independent distribution, the 
remaining four fingers demonstrated a comparable linear trend due to 
their analogous lengths. The variations influenced the discrepancies in 
the horizontal moving distance distribution of the knuckles’ lengths. 
During the experiment, a thin line with scale markings is affixed at the 
distal end of the mobile segment. Each measurement ensured that the 
mobile end aligned with the pipe’s leftmost part (near the palm position) 
initially. The experiments demonstrate that the output of the existing 
operating principle can support the device in detecting finger flexion 
movements.

Assess the output variability when the MCP is unable to sustain stable 
conditions by measuring the horizontal displacement of the five fingers 
across a range of angles during MCP actuation. The MCP is fixed at 30 
degrees due to its typically modest range of motion. As perceived in 
Fig. 4f, all four fingers, except the ring finger, exhibit satisfactory line-
arity up to 60 degrees of bending. Moreover, once the bending goes 
beyond 90 degrees, the displacement length increases instantly, 
breaking the original linear equilibrium. To argue this point, the outputs 
under both linear and nonlinear forces are tested for bending degrees of 
curvature exceeding or equal to 90 degrees. In Fig. 4g, when the MCP 
joint is maintained in a horizontal position, the uniform flexion of the 
first two phalangeal joints leads to a distribution of significantly pro-
nounced positive and negative peaks with more consistent amplitudes. 
Once the MCP is moved in unison, the resulting changes in output are 
erratic. A transient increase in amplitude is observed, followed by a 
rapid decrease. Based on the analysis of the reasons, it can be postulated 
that when the individual finger joints are bent, the bending force is 
mainly concentrated at a joint of the finger, involving smaller muscle 
groups, and the distribution of the force is more concentrated, resulting 
in a relatively stable signal amplitude. Whenever the three joints are 
flexed, the force distribution becomes less concentrated, resulting in an 
overall increase in the total force. This leads to a progressive rise in 
amplitude—the complex intermuscular nervous system (INS) results in 
complicated linear motions and reduced frequency consistency. If the 
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flexion angle is too large, the tension in the tendon may surpass the ideal 
range for transmitting force, leading to inefficient force transmission 
and a decrease in amplitude. To enable comparison, a complete cycle of 
movement is executed, consisting of an initial phase of joint bending and 
a subsequent phase of releasing the movement after bending (Fig. 4h). 
On the one hand, variations in both linear and nonlinear movement 
patterns are noticeable during the flexion phase. On the other hand, the 
process of releasing something experiences a temporary and abrupt 
alteration caused by the finger being pulled back, caused by the sliding 
of the sensor. By integrating the phase information of the lower signal, a 
more comprehensive understanding of the motion may be obtained.

2.5. Deep learning based single finger state analysis

Figure S7 shows an image of the overall modular layout. The two 
signals from a single finger are interfaced with the analog input termi-
nals of a microcontroller unit (MCU), specifically an Arduino Nano 33 
BLE, after which they are subjected to amplification. To ensure 

compatibility with the MCU’s integrated analog-to-digital converter 
(ADC), a DC bias is incorporated into the signals, thereby aligning them 
with the ADC’s read range. Furthermore, the MCU’s integrated step- 
down module is utilized to adapt the chip’s power supply to meet the 
3.3 V requirement, while the built-in low-power Bluetooth module fa-
cilitates long-distance, low-power wireless data transmission, enhancing 
the system’s overall efficiency and functionality. The microprocessor is 
equipped with eight analog input interfaces. To accommodate the 
simultaneous input from all five fingers, requiring ten analog input 
channels, an external multiplexer (MCP3008) widens the system’s ca-
pabilities. Additionally, the system, utilizing PyCharm, integrates the 
Bleak and PyQtGraph libraries to wirelessly receive data from the MCU 
and to provide real-time graphing of multi-channel signals on the 
graphical interface, as shown in Figure S8.

Characterizing the flexion and extension states of a single finger joint 
involves sampling data across a range of angles and frequencies rather 
than refining the bending angle. This strategy aims to develop a more 
robust model. Fig. 5a illustrates the ability of the three-layer CNN model 

Fig. 4. Characterization of bidirectional sensing systems. (a) The output displays the controlled horizontal sliding of the double-joint at varying angles, all at a 
consistent frequency (half cycle). (b) The waveform output generated by the bi-directional sensors bending at an angle of 15◦ is observed at varying frequencies (full 
cycle). (c) Capture the difference between the two-way signals to distinguish the direction of motion. (d) Establish a relationship between the number of main peaks 
of the two signals and the bending angle. (e) The five fingers traverse the horizontal distance with angle change during double-joint movement. (f) The horizontal 
movement distance of the five fingers with angle change under three-joint synergy. (g) The sensor detects differentiated output signals for different joint configu-
rations. (h) Comparison of dual signal outputs in two cases.

L. Liu et al.                                                                                                                                                                                                                                       Nano Energy 133 (2025) 110491 

7 



to process dual-channel voltage data simultaneously. The convolutional 
operations across multiple channels capture distinct information from 
each channel, resulting in a more comprehensive and nuanced feature 
representation. Dimensionality reduction techniques, including Prin-
cipal Component Analysis (PCA) and t-distributed Stochastic Neighbor 
Embedding (t-SNE), are utilized to project high-dimensional data into a 
lower-dimensional space, while classification labels are converted to a 
one-hot encoding format. The model training incorporated the Reduc-
eLROnPlateau callback function, which reduces the learning rate by a 
specified factor if the monitored metric (val_loss) shows no improve-
ment over a set number of epochs. Learning rate scheduling and model 
checkpoint callback functions are employed to adjust the training pro-
cess dynamically, optimizing the parametric model. The predicted re-
sults are indicated by three numbers representing joint movement: 0 for 
maintaining the original position, 1 for forward movement, and 2 for 
backward extension (Fig. 5b), as detailed meaning in Fig. 5c. Accurate 
prediction of joint motion states enables precise gesture estimation and 
repositioning.

Executing a series of repeated finger flexion and extension move-
ments, research amassed comprehensive data on flexion across a variety 
of states and frequencies (Fig. 5d). Each channel is sampled with 200 
data points and repeated 100 times at different intervals. Analysis of the 
waveform information reveals distinct patterns for flexion and extension 
in the double-joint configuration, including various flexion situations 
below 90 degrees, to enhance the model’s generalization and mitigate 
overfitting. Compared to the double-joint, the three-joint synergistic 
scenario exhibited more pronounced waveform changes sampled at 
larger bending amplitudes. The upward-only, downward-only, and dual- 
channel signals are compared to assess improvements in dual-channel 
prediction performance. In examining the confusion matrix depicted 
in Figure S9, a notable enhancement in the prediction accuracy for each 
joint motion is discernible upon the utilization of dual-channel signals, 
as evidenced in Fig. 5e.

2.6. Real-time gesture monitoring aids robot imitation learning

For single-finger signals, distinguishing different motion states can 
be achieved through peak count or signal amplitude due to their limited 
information dimension. Nevertheless, discerning data discrepancies 
through visual inspection becomes challenging for complex gestures 
that entail interactions across multiple joints. Additionally, finger 
tremors induced by fatigue can introduce variability in the signal pat-
terns. This study employs machine learning to capture subtle differences 
for accurate classification, optimizing the previously designed single- 
finger model. The experimental system, shown in Fig. 6a, integrates 
sensors with Unity for real-time gesture imitation and interaction. Ma-
chine learning-based object recognition translates voltage features into 
digital commands, simplifying the mapping of object information into 
virtual space. To improve prediction accuracy, the CNN model is refined 
with ten channels of data, with each channel sampled at 150 points 
(Figure S10). The channels are grouped into five pairs, with shared 
convolutional layers used for feature extraction to better capture local 
correlations between sensor channels from the same finger. Figure S11
exhibits the outcomes of the visualization process, wherein gestures 
from various categories are discernible and well-separated.

The model’s performance is evaluated by comparing it with several 
alternatives: multi-channel Convolutional Neural Network (CNN), 
multi-channel Convolutional Neural Network-Long Short Term Memory 
(CNN-LSTM), and our shared convolutional layers-Convolutional Neural 
Network(SCL-CNN) model. The confusion matrices for predictions are 
presented in Fig. 6b and Figure S12. Table 1 details the classification 
accuracy for each model. Although the CNN-LSTM architecture captures 
temporal dependencies in conjunction with spatial features, its accuracy 
decreased, likely owing to weak temporal correlations within our data 
and increased model complexity, which led to overfitting. Notably, the 
confusion matrices, particularly for the multi-channel CNN model, 
indicate that the primary cause of accuracy reduction stems from mis-
classifications between gestures 0 (fist) and 2 (five-finger spread), which 

Fig. 5. Single-finger motion state recognition and analysis. (a) Neural network classification model based on two-channel CNN. (b) Classification results: digits are 
used to refer to different joint states. (c) Representation of the exact meaning of the classification and recognition results. (d)Acquired dual-channel signal waterfall 
diagram (x-axis: different motion states, y-axis: multiple sampling processes in the same state, z-axis: the magnitude of the voltage output of the signal). (e) 
Comparison of classification accuracy under dual-channel and single-channel.
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exhibit similar complexity and dynamics. In contrast, the enhanced SCL- 
CNN model achieves over 97 % accuracy, demonstrating that shared 
feature spaces can substantially improve prediction performance. This 
advancement supports greater control precision in virtual interactions, 
enhancing user experience. The Unity3D-based intelligent interface, as 
showcased in the supplementary Video S1, replicates operator gestures 
with a virtual hand, which can be trained to transition from mimicking 
the bending of a single finger to imitating complex gestural movements, 
even in the absence of a camera. Through engagement with the game, 
the robot can comprehend the underlying mechanics through the out-
comes of human actions, thereby gradually acquiring the capacity to 
master the rules. Fig. 6c and S13 illustrate the virtual hand’s capability 
to imitate human gestures, conduct simple interactions, and refine the 
accuracy of complex movements to accommodate varied interactive 
needs.

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2024.110491.

Supplementary material related to this article can be found online at 

doi:10.1016/j.nanoen.2024.110491.

2.6.1. Smart glove integrated with large-scale model for real-time 
interaction

Fig. 7a depicts the core structure of an intelligent system composed 
of three main components: perception, intelligent decision-making, and 
action implementation. The intelligent system is designed to dynami-
cally adapt to environmental changes by processing multidimensional 
sensory inputs—including auditory, visual, and tactile data—through its 
perception module. In this framework, the human operator utilizes data 
gloves to enhance the application of deep learning techniques, thereby 
enabling continuous improvement in the system’s intelligence. The 
decision-making layer, represented by the brain, manages critical 
functions such as data storage and response generation. By integrating a 
large language model as an interface, the robot progressively acquires 
the capability to execute actions through natural language interactions.

Fig. 7b showcases the User Interface (UI). The robot’s learning ca-
pacity is augmented by integrating linguistic and gestural inputs, which 
fosters its development into a fully autonomous intelligent entity. Sup-
plementary Video S2 presents a comprehensive overview of the 
demonstration process. The correct execution of a greeting gesture forms 
the foundation for identity verification, thereby ensuring the confiden-
tiality of information (Fig. 7b(i)). Additionally, in Fig. 7b(ii), the robot, 
activated by a designated wake word and equipped with dual-layer 
encryption, can respond verbally, thus minimizing the risk of misuse. 
The integration of gestural commands enables the robot to perform basic 

Fig. 6. Experimental system for real-time acquisition. (a) Overall experimental flowchart. (b)Accuracy confusion matrix for gesture imitation. (c) The learning 
interface is constructed through the Unity platform. This includes action imitation and interaction.

Table 1 
Prediction accuracy of different models.

Model Accuracy(%)

CNN 94.444
CNN-LSTM 87.5
SCL-CNN 97.222
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mathematical operations and engage in more meaningful interactions 
with humans beyond traditional computational environments, enriching 
the gaming experience (Fig. 7b(iii)).

3. Conclusion

In summary, this research introduces a novel wearable teaching 
interface designed to empower robots with the capability to autono-
mously acquire knowledge. Our design incorporates a self-powered 
triboelectric nanogenerator (TENG) sensing mechanism and introduces 
an advanced electrode configuration that strategically employs phase 
differential principles, featuring electrodes of diverse widths for opti-
mized performance. This innovative combination allows for the creation 
of smart gloves with high precision to detect a wide array of intricate 
hand gestures. Furthermore, this work incorporates the use of shared 
convolutional layers within a Convolutional Neural Network (CNN) 
model, resulting in remarkable precision in distinguishing both indi-
vidual finger joint states and the overall execution of hand gestures, with 
a success rate surpassing 95 %. Additionally, an online intelligent 

education platform has been developed, which harnesses large-scale 
models and Unity3D technology to seamlessly integrate sensors with 
cutting-edge machine learning and AI technologies. By enhancing the 
mimetic learning abilities of the robots, this platform facilitates the 
achievement of dialogue, recognition, and teaching tasks within the 
robot’s system, ultimately offering an immersive and engaging educa-
tional experience. Overall, this research contributes significantly to the 
advancement of Embodied AI and wearable technology, establishing the 
foundation for future innovative educational applications.

4. Experimental section

4.1. The fabrication process of the Phalanges-based Triboelectric Sensor 
(PTS)

As depicted in Figure S14, the fabrication process involves con-
structing two main components: a fixed end and a movable end. A 1 mm 
EVA foam layer is laminated onto a PVC film to serve as the supporting 
framework of the device. The length of each segment is predetermined 

Fig. 7. Gesture-Based Growth Large Language Model (LLM) Robot System. (The Large Language Model is derived from the iFLYTEK Model). (a) The overall ar-
chitecture of the intelligent system. (b) A stand-alone Teaching Interface (Ti-EAI) enables the robot to execute various tasks: (i) Character authentication for secure 
and confidential access control. (ii) Integration of voice and gesture interaction for dialog and logical reasoning with the robot. (iii) Interaction with the robot 
through smart gloves allows the user to distinguish between block shapes and engage in interactive gaming.
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by measuring the distances between the finger joints, and the connecting 
components are cut to these lengths using laser cutting. The width of 
each component is set to 1.5 cm, slightly longer than the finger’s width 
(2 cm for the thumb). Once the cutting process is complete, the com-
ponents are assembled. For the fixed end of the tubular structure, 
interdigitated electrodes made from 3 mm wide copper foil tape are 
arranged with a 1 mm gap on the inner surfaces, and a 0.1 mm FEP film 
is applied as the critical triboelectric material. For the movable end, grid 
copper electrodes of different widths (3 mm on the top and 5 mm on the 
bottom) are applied to the upper and lower surfaces. The tubular 
structure of the fixed end has openings at both ends, allowing the linkage 
structure to slide freely within the tube as the finger joints move.
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