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 A B S T R A C T

The integration of machine learning techniques with triboelectric nanogenerators (TENGs) offers a transfor-
mative pathway for optimizing energy harvesting technologies. In this study, we propose a comprehensive 
framework that utilizes graph neural networks to predict and enhance the performance of TENG electrode 
materials and doping strategies. By leveraging an extensive dataset of experimental and computational results, 
the model effectively classifies electrode materials, predicts optimal doping ratios, and establishes robust 
structure–property relationships. Key findings include a 65.7% increase in energy density for aluminum-
doped PTFE and an 85.7% improvement for fluorine-doped PTFE, highlighting the critical influence of doping 
materials and their concentrations. The model further identifies PTFE as a highly effective negative electrode 
material, achieving a maximum energy density of 1.12 J/cm2 with 7% silver (Ag) doping when copper (Cu) 
is used as the positive electrode. This data-driven approach not only accelerates material discovery but also 
significantly reduces experimental costs, providing novel insights into the fundamental factors influencing 
TENG performance. The proposed methodology establishes a robust platform for intelligent material design, 
advancing the development of sustainable energy technologies and self-powered systems.
1. Introduction

With global industrialization and the increasing demand for en-
ergy, the need for efficient energy harvesting technologies has grown 
substantially [1–4]. Among these technologies, the triboelectric nano-
generator (TENG) has garnered significant attention due to its low cost, 
lightweight design, flexibility, and versatility in material selection [5–
8]. The performance and power output of TENGs are largely deter-
mined by the selection of positive and negative electrode materials, as 
well as their surface properties [9–11]. Additionally, variations in the 
types and proportions of dopants in electrodes significantly affect the 
overall performance of TENGs [12,13]. As the demand for intelligent 
self-powered systems based on TENG technology continues to rise, 
there is a pressing need to enhance output performance [14,15]. To 
address these challenges, the integration of machine learning (ML) 
techniques offers a promising solution for optimizing TENG material 
selection.

ML, first introduced in 1959, has experienced remarkable growth 
in recent years [16], driven by advancements in computational power. 
Experts across diverse fields – including game development, economics, 
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and bioinformatics – have successfully integrated ML, achieving im-
pressive outcomes. With the widespread availability of ML resources 
and tools, coupled with enhanced data processing capabilities, ML 
holds significant potential to reduce material screening time and costs
[17–19]. Unlike traditional methods that rely heavily on manual ma-
terial selection and performance testing, the characterization and per-
formance analysis of TENGs often require substantial time and human 
resources for design and experimental validation. This growing demand 
for efficient material optimization has driven increased interest in 
ML applications for TENG research. While ML has already demon-
strated notable progress in integrating nanotechnology with energy 
systems [20–23], a comprehensive predictive model to guide the se-
lection of optimal positive and negative electrode materials for TENGs 
remains underdeveloped.

Graph Neural Networks (GNNs) are particularly suited for TENG 
material optimization due to their ability to model complex, non-linear 
relationships between material components, such as electronegativity 
and dielectric constants. Traditional ML methods, including fully con-
nected neural networks and support vector machines, often struggle 
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to capture these intricate dependencies. In contrast, GNNs incorporate 
structural and relational data, making them ideal for understanding the 
interconnected properties of TENG materials.

Furthermore, unsupervised learning in GNNs enables the model to 
explore datasets without relying on limited labeled data, facilitating 
the discovery of new materials and doping strategies. This approach 
provides a scalable and efficient framework for material optimization, 
capable of uncovering hidden patterns and significantly accelerating 
the screening process [24].

In this study, we present an innovative approach employing GNNs 
for predictive analysis and performance evaluation of TENG electrode 
materials. Our methodology establishes a comprehensive framework 
that systematically addresses the critical challenge of material opti-
mization in TENG systems. The research encompasses three key phases: 
material classification, data acquisition and preprocessing, and predic-
tive modeling. Initially, we implement a rigorous classification scheme 
for substrate materials and dopants associated with both positive and 
negative electrodes. This is followed by the compilation of an extensive 
dataset incorporating experimental measurements and computational 
simulations, capturing essential parameters such as parent material 
characteristics, dopant specifications, concentration ratios, and corre-
sponding performance metrics [12,13]. Through advanced data pre-
processing techniques, we extract and quantify the dominant factors 
governing TENG output performance.

Traditional methods, such as experimental screening, first-principles 
calculations, and supervised ML, are often limited by their time-
consuming nature, high computational costs, and reliance on labeled 
data. In contrast, our proposed approach, which combines GNN plus 
unsupervised learning, offers several key advantages. It effectively 
models complex material relationships and eliminates the dependency 
on labeled data, thereby enabling the exploration of a significantly 
broader material space. Despite its flexibility and efficiency, the method 
requires high-quality training data and faces challenges in interpretabil-
ity when compared to traditional methods. Nonetheless, we believe 
this approach provides an innovative and scalable solution for opti-
mizing TENG materials, demonstrating clear advantages over existing 
methods [25,26].

The core of our methodology lies in the development of a sophis-
ticated GNN-based predictive model, which enables high-throughput 
screening of material combinations and precise performance prediction. 
This model eliminates the need for computationally intensive recalcula-
tions by establishing robust structure–property relationships. Utilizing 
unsupervised learning paradigms, the GNN architecture demonstrates 
exceptional capability in autonomous material classification. For opti-
mal electrode material selection, our model validation reveals remark-
able accuracy in predicting critical performance indicators, including 
output voltage, current density, and power generation, with particular 
emphasis on the influence of dopant characteristics and concentration 
profiles.

The systematic analysis conducted using our GNN model provides 
unprecedented insights into the key determinants of TENG perfor-
mance, introducing a transformative approach to rational material se-
lection and optimization for energy harvesting applications. This study 
marks a significant advancement in the field of intelligent material 
design for TENG systems by offering a robust computational platform 
that effectively links material properties with device performance.

By optimizing material selection, our approach enhances the effi-
ciency and performance of TENGs, thereby improving energy harvest-
ing in real-world applications. This underscores the practical value of 
our research in advancing energy solutions for wearable electronics and 
smart sensors [27]. Furthermore, the proposed methodology not only 
deepens our understanding of structure-performance relationships in 
TENGs but also establishes a new paradigm for data-driven material 
discovery in energy conversion technologies.
2 
2. Results and discussion

2.1. Material classification model for TENGs

A robust material classification model is essential for TENGs due 
to their exceptional versatility, environmentally sustainable character-
istics, and potential for green energy applications. This framework 
must effectively classify electrode materials, evaluate their suitability as 
positive or negative electrodes, and quantitatively assess their electron 
affinity properties.

The exceptional versatility of TENGs, combined with their envi-
ronmentally sustainable characteristics and green energy potential, 
necessitates the development of a robust material screening framework. 
This framework must effectively classify diverse electrode materials, 
evaluate their suitability as positive or negative electrodes, and quan-
titatively assess their electron affinity characteristics. As illustrated in 
Fig.  1(a) and (b), our unsupervised learning paradigm demonstrates 
remarkable classification accuracy through a set of simple instructions. 
The model autonomously categorizes common materials into positive 
or negative electrode classifications for TENG devices. The classifica-
tion results exhibit complete consistency with both experimental obser-
vations and established literature, thereby validating the precision and 
reliability of our unsupervised learning architecture. For example, the 
model accurately identifies metallic elements (e.g., lithium (Li), copper 
(Cu), and aluminum (Al)) as appropriate positive electrode materials 
while correctly classifying polymers such as polytetrafluoroethylene 
(PTFE), polyimide (PI), and polycarbonate (PC) as negative electrode 
materials. Moreover, this framework enables a deeper understanding 
of material properties through systematic classification.

Fig.  1(c) presents a quantitative ranking of material electron affin-
ity characteristics, demonstrating excellent agreement with published 
experimental data. The hierarchy of rankings shows strong consistency 
with the triboelectric series established by Wang et al. in 2019 [28], 
thus confirming the physical validity of our predictive model. This 
material classification and screening model provides a powerful tool 
for rational electrode material selection in TENG design. Further-
more, the integration of doping materials screening capabilities enables 
performance-optimized material selection based on predicted output 
characteristics, representing a significant advancement in TENG ma-
terial informatics. These advancements highlight the model’s potential 
for broader applications in material science.

The developed model establishes a novel approach for intelligent 
material selection in triboelectric energy harvesting systems, offer-
ing substantial improvements over conventional trial-and-error ap-
proaches. The demonstrated accuracy in material classification and 
prediction of electronic gain and loss capability, coupled with the abil-
ity of the model to predict doping materials, provides a comprehensive 
solution for performance-optimized TENG design. This computational 
framework not only accelerates material discovery but also enhances 
our fundamental understanding of structure–property relationships in 
triboelectric materials.

2.2. Optimized material screening for TENG electrodes

To optimize polymer electrode selection in TENGs, we developed 
a robust ML model that systematically correlates TENG performance 
metrics with the intrinsic properties of electrode materials. This model 
rigorously controls material-specific variables, ensuring accurate pre-
dictions for polymer-based negative electrodes and enabling compre-
hensive material screening.

To establish a robust ML model for optimizing negative electrode 
selection in TENGs, we developed a comprehensive material screen-
ing model. By systematically analyzing thousands of peer-reviewed 
studies, we quantified the fundamental correlations between the per-
formance metrics of TENGs (output current, voltage, power density, 
and cyclic stability) and the properties of electrode materials. During 
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Fig. 1. Classification of materials as TENG positive and negative electrodes under unsupervised learning using a convolutional neural network model. (a) Predicted materials 
suitable for positive electrodes. (b) Predicted materials suitable for negative electrodes. (c) The ability of common materials to gain and lose electrons predicted based on the 
quantized triboelectric series.
model development, we rigorously controlled parameters by isolating 
material-specific variables from external factors such as surface mor-
phology, contact area, and electrode thickness. This approach ensured 
the model’s predictive accuracy for polymer-based negative electrode 
materials. Based on this model, we screened various negative electrode 
materials and analyzed their performance characteristics.

As demonstrated in Fig.  2(a), our material screening reveals that 
pairing PTFE with positive copper electrodes achieves exceptional per-
formance, producing an output voltage of 325 V and an energy density 
of 0.35 J/cm2. The predicted data align closely with results reported 
in the literature and experiments [29–31]. Notably, our prediction 
identifies graphene (GP) as an outstanding negative electrode material, 
achieving superior performance metrics, including a 375 V output 
voltage and 0.45 J/cm2 energy density. This remarkable performance 
is attributed to graphene’s exceptional surface area characteristics [32]. 
Despite high output performance, the practical implementation of GP 
electrodes faces significant challenges, such as high material costs and 
complex pretreatment requirements.

The predicted performance hierarchy of conventional polymer ma-
terials, including polypropylene (PP), polyvinylidene fluoride (PVDF), 
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PI, and polyvinyl chloride (PVC), exhibits remarkable agreement with 
the established triboelectric series [28]. This correlation not only val-
idates the predictive accuracy of our ML model but also provides 
fundamental insights into the structure–property relationships govern-
ing triboelectric performance. Our developed model marks a signifi-
cant advancement in data-driven material selection for TENG appli-
cations, offering a systematic approach to optimize electrode material 
screening while considering both performance metrics and practical 
implementation constraints.

2.3. Optimized doping strategies for TENGs output performance

To enhance the performance of TENGs, we systematically inves-
tigated the impact of material doping strategies on key performance 
metrics, including output current, voltage, and energy density em-
phatically. Our computational model identified optimal doping ma-
terials and concentrations, providing a framework for performance 
optimization through enhanced charge capture efficiency and transfer 
kinetics.
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Fig. 2. Predicted TENG output performance with different negative electrode materials selected using Cu as the positive electrode. (a) Output voltage (V) and energy density as 
functions of negative electrode materials. (b) Optimized maximum energy density of TENG performance as a function of doping materials when PTFE is selected as the negative 
electrode material, corresponding to the optimal doping ratio, as predicted by a convolutional neural network model.
Following the initial validation of our model’s predictive accuracy, 
we extended our investigation to systematically analyze the perfor-
mance enhancement of TENGs through various material doping strate-
gies. Our study focused on key performance metrics, including output 
current, voltage, and energy density. Figs.  2(b) and 3 illustrate the 
comparative performance analysis of diverse polymers enhanced with 
a range of dopant materials. Based on this model, we explored the 
influence of different doping strategies on TENG performance.

The computational model identified undoped PTFE as a promising 
candidate (Fig.  2(a)), demonstrating substantial output energy density 
and cost-effectiveness for practical applications. Our analysis revealed 
that material doping significantly influences TENG performance char-
acteristics (Fig.  2(b)). Specifically, incorporating elemental dopants 
(fluorine (F), nitrogen (N), aluminum (Al)) and oxide materials (silicon 
dioxide (SiO2), titanium dioxide (TiO2)) into PTFE matrices resulted in 
notable improvements in output voltage and energy density (Fig.  2(b)). 
The doping optimization process was guided by our predictive model, 
which identified optimal doping ratios to maximize performance. As 
shown in Fig.  2, introducing Al dopant at 3% concentration enhanced 
the energy density from 0.35 J/cm2 (undoped PTFE) to 0.58 J/cm2, 
increased by ∼65.7%. This improvement is attributed to enhanced 
charge capture efficiency and transfer kinetics. Fluorine-doped PTFE, 
in particular, exhibited favorable characteristics [33]. In our study, 
the doping of F at 4% concentration increased the energy density of 
4 
PTFE up to 0.65 J/cm2 (Fig.  2(b)), increased by ∼85.7%. Our anal-
ysis revealed distinct doping efficiency trends, with certain materials 
achieving substantial performance gains at low concentrations, while 
others required higher doping ratios for comparable improvements.

Comparative analysis of oxide-doped systems revealed superior per-
formance enhancement compared to elemental doping, primarily due 
to improved dielectric properties and enhanced charge generation and 
transfer mechanisms [34]. Fig.  3 illustrates the performance optimiza-
tion of various polymer matrices (PVDF (Fig.  3(a)), PI (Fig.  3(b)), 
FEP (Fig.  3(c)), and PET (Fig.  3(d))) through different doping mate-
rials. Notably, a 4% TiO2 doping ratio enhanced energy density up 
to 0.63 J/cm2, 0.53 J/cm2, and 0.63 J/cm2 in PVDF, PI, and FEP, 
respectively. Even undoped PET, which exhibited relatively poor en-
ergy density (0.2 J/cm2) as shown in Fig.  3(d), achieved an energy 
density of 0.54 J/cm2 (enhanced by ∼170%) with 5% TiO2 dop-
ing. Interestingly, oxygen doping demonstrated limited performance 
improvement across various polymer matrices, requiring higher con-
centrations while yielding suboptimal energy density enhancements. 
These performance improvements are due to the lower electron affinity 
of oxygen. These findings align with fundamental triboelectric prin-
ciples and established physical theories, validating the robustness of 
our predictive model. The developed model provides valuable insights 
into structure–property relationships in doped triboelectric materials, 
offering a systematic approach for performance optimization in TENG 
applications.
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Fig. 3. Predicted TENG output performance when Cu is used as the positive electrode and different types of negative electrode materials are selected, with optimal doping ratios 
for different doping materials. The optimal doping ratios (left vertical axis) as well as the corresponding maximum energy density (right vertical axis) as a function of the selected 
doping materials for negative electrode materials: (a) PVDF, (b) PI, (c) FEP, and (d) PET, as predicted by a convolutional neural network model.
2.4. Optimization of doping ratios for TENG performance

We systematically investigated the relationship between doping 
ratios and TENG output performance. Optimizing the performance 
of TENG through doping strategies involves understanding the criti-
cal roles of doping materials, substrate materials, and doping ratios. 
By leveraging a predictive model, the optimal doping ratios can be 
identified to maximize energy density, providing both theoretical and 
practical frameworks for enhancing TENG output [35].

Building on the success of our predictive model, we further investi-
gated the relationship between the doping ratio of materials applied to 
the polymer substrates and the resulting output performance. PTFE was 
selected as the substrate material due to its excellent performance char-
acteristics, while titanium dioxide (TiO2) was chosen as the primary 
dopant for its demonstrated ability to enhance efficiency and out-
put performance. Based on this foundation, we analyzed how varying 
doping ratios influence energy density and overall output performance.

As shown in Fig.  4(a), starting with a 0% doping ratio, the output 
energy density exhibited a significant increase as the fluorine doping 
ratio increased. Specifically, when the doping ratio reached 4%, the 
energy density was maximized at 0.3 J/cm2. However, further increases 
in the doping ratio resulted in a decline in energy density. Similarly, 
doping with other materials in PTFE, such as TiO2 (Fig.  4(b)) and 
Al (Fig.  4(c)), and F doped in PVDF (Fig.  4(d)) followed a compara-
ble trend: the energy density initially increased before decreasing at 
higher doping ratios. This trend suggests the existence of an optimal 
doping ratio for each material, beyond which performance begins to 
deteriorate.

These findings confirm the existence of an optimal doping ratio 
that maximizes output performance. This trend aligns with experi-
mental observations, demonstrating that each material has a specific 
5 
doping ratio corresponding to its maximum output efficiency. Moder-
ate doping enhances charge capture and transfer efficiency, increases 
charge shielding effects, but compromises material stability, ultimately 
decreasing energy density.

The objective is to minimize the proportion of doping materials 
while enhancing performance. By leveraging large-scale model pre-
dictions, we can narrow the range of doping ratios, reduce screening 
time, and efficiently identify the optimal doping ratio. This approach 
minimizes the influence of doping materials on parent materials, re-
ducing structural and performance interference while lowering manu-
facturing costs for TENG devices. Additionally, our predictive model 
provides valuable insights for doping experiments and industrial de-
sign, improving material selection processes and enhancing prediction 
accuracy.

2.5. Performance optimization of TENG via doping strategies based on 
physical and chemical mechanisms

Table  1 presents the doping ratios corresponding to the optimal 
energy density achieved by incorporating various doping materials into 
different polymers. By comparing the energy density before and after 
doping, it is evident that different doping materials exert varying effects 
on the substrate materials. For instance, certain materials, such as Al, 
require only a small amount of doping to significantly enhance the 
output energy density when doped into substrates like PTFE, PVDF, 
and PS. In contrast, oxygen doping requires a higher doping ratio to 
achieve substantial improvements in energy density. These findings 
underscore the critical influence of the doping material, substrate ma-
terial, and doping ratio on the performance of TENG, necessitating a 
comprehensive evaluation of these factors.
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Fig. 4. Predicted TENG output performance with different doping materials and doping ratios when Cu is used as the positive electrode. Energy density as a function of doping 
ratio. Doping materials and substrate materials include: (a) F doping in PTFE, (b) TiO2 doping in PTFE, (c) Al doping in PTFE, and (d) F doping in PVDF, as predicted by a 
convolutional neural network model.

Fig. 5. Workflow for predicting the output performance of the negative electrodes in TENG. (a) Synthesized materials were extracted from literature. (b) Experimental data were 
collected from prior studies. (c) The data were integrated into a convolutional neural network model for training. (d) The output performance and accuracy were evaluated using 
the predicted results.
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Fig. 6. Schematic of a four-layer GNN with hierarchical pooling for TENG electrode polarity prediction. The model consists of four attention-based pooling layers that aggregate 
multiscale material representations. A seven-layer multilayer perceptron translates the pooled features into binary electrode polarity classification, with Batch Normalization and 
stochastic dropout applied between layers to improve generalization and mitigate overfitting.
Table 1
Selected negative electrodes, including PTFE, FEP, PVDF, polyethylene glycol terephthalate (PET), PS, PI, polyether-ether-ketone (PEEK), and polyurethane (PU), were subjected 
to a doping optimization process. These electrodes were doped with materials such as Ag and Cu to determine the optimal doping ratio (%) and the corresponding maximum 
energy density (J/cm2), as calculated using a convolutional neural network model. Cu was used as the positive electrode. For example, doping Ag into PTFE achieves an optimized 
maximum energy density of 1.12 J/cm2 at an optimal doping ratio of 7%.
 Doping Optimized maximum energy density (J/cm2) @ the optimal doping ratio (%)
 materials PTFE FEP PVDF PET PS PI PEEK PU  
 Ag 1.12@7 0.63@3 0.86@5 0.82@7 0.76@5 0.53@5 0.86@5 0.86@5  
 Cu 0.96@5 0.64@3 0.79@6 0.75@4 0.84@4 0.53@5 0.94@8 0.75@4  
 SiO2 0.83@4 0.58@4 0.64@4 0.50@6 0.51@5 0.51@4 0.78@4 0.73@4  
 F 0.83@5 0.59@4 0.68@7 0.51@6 0.51@3 0.52@5 0.72@5 0.78@5  
 ZnO 0.83@5 0.62@4 0.64@4 0.53@5 0.53@4 0.52@4 0.69@4 0.82@5  
 Al 0.83@4 0.51@3 0.53@3 0.42@3 0.61@5 0.45@4 0.71@4 0.73@5  
 TiO2 0.76@5 0.63@4 0.63@4 0.54@5 0.48@3 0.53@4 0.74@5 0.73@5  
 Zn 0.76@4 0.55@3 0.59@5 0.48@5 0.51@4 0.47@3 0.64@3 0.73@4  
 Si 0.76@4 0.51@4 0.43@4 0.51@3 0.48@5 0.52@5 0.64@5 0.73@3  
 Ti 0.45@6 0.62@5 0.48@5 0.49@4 0.61@4 0.53@4 0.71@3 0.73@4  
Table 2
Performance comparison of clustering algorithms (DEC, K-means, and DBSCAN).
 Algorithm Classification 

accuracy
Silhouette 
score

Prediction 
time

Computational 
complexity

 

 (%) (s)  
 DEC 0.89 0.85 40 High  
 K-means 0.78 0.60 10 Medium  
 DBSCAN 0.80 0.62 15 Medium  
Note: DEC demonstrates superior clustering performance in terms of accuracy and 
silhouette score, albeit at the cost of higher computational complexity and prediction 
time.

Doping not only enhances conductivity but also impacts energy 
density by altering the material’s electronic structure. Charge trap-
ping occurs when dopants introduce defects or intermediate states in 
the material, which captures surface charges [36], increasing charge 
density and enhancing energy storage [37]. Additionally, doping can 
modify the surface charge distribution, affecting charge mobility and 
trapping dynamics, which optimize energy release. On the other hand, 
doping also affects the material’s bandgap. Changes in the bandgap 
directly influence the excitation and transfer of electrons, which in turn 
alters the energy output [38]. Doping elements can shift the bandgap 
to improve the material’s conductivity or create optimal conditions 
for charge transfer, thus influencing the efficiency of the triboelectric 
process.

Our ML model, based on GNNs, predicts the optimal doping ra-
tio by integrating structural and electronic data. The model learns 
7 
how doping influences surface charge density, charge mobility, and 
bandgap size, finding the ratio that maximizes energy output. Our 
results show that the doping ratios predicted by the model align with 
established triboelectric theories, which state that higher surface charge 
density, enhanced electron mobility, and an optimized bandgap result 
in improved energy harvesting efficiency. Overall, the optimal doping 
ratios predicted by our ML model are consistent with existing tribo-
electric theories, showing that doping affects energy density through 
mechanisms such as charge trapping and bandgap modulation.

The optimization of doping is guided by our predictive model, 
which identifies the optimal doping ratio to maximize performance. Ta-
ble  5 presents the percentage deviations between the model predictions 
and the experimental results. This predictive model not only provides 
a theoretical foundation for doping optimization but also serves as a 
practical tool for evaluating and enhancing TENG output performance 
in specific systems. For example, the predicted energy density for Ag 
doped into PTFE, with a Cu negative electrode, is 1.12 J/cm2. This 
value could serve as a standard for pure Cu doped into pure PTFE. 
Future experiments can leverage this predicted value as a baseline 
to analyze enhancements by comparing experimental results with the 
model’s predictions [39].

2.6. Validation of TENG predictive model

The predictive model for TENGs was validated through experi-
mental data, demonstrating its ability to classify materials, predict 
output performance with 98% accuracy, and evaluate the effects of 
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Table 3
Comparison of machine learning models for predictive performance and efficiency.
 Model R-squared Prediction 

time
Computational 
complexity

Inter-
pretability

 

 (s)  
 GNN 0.98 50 High Moderate  
 Random Forests 0.85 12 Medium High  
 GBT 0.88 25 Medium Moderate  
 FNN 0.81 30 Low High  
Note: GNN achieves the highest R-squared value, indicating superior predictive 
accuracy, but demands greater computational resources. Random Forests strike a 
balance between predictive accuracy and interpretability, making them preferable for 
applications requiring explainable models compared to Gradient Boosting Trees (GBT) 
and Feedforward Neural Networks (FNN).

Table 4
Dataset partitioning and corresponding model performance.
 Dataset partition Proportion Model performance 
 (%) (R-squared)  
 Training set 70 0.98  
 Validation set 15 0.92  
 Test set 15 0.90  
Note: The GNN model demonstrates robust generalizability, with consistent performance 
across validation and test datasets, indicating minimal overfitting and reliable predic-
tion accuracy.

doping strategies. These results confirm the model’s robustness and 
applicability for optimizing TENG design and performance.

To validate the accuracy and efficiency of the model, we selected 
eight distinct sets of experimental data from TENG electrodes, none 
of which were included in the model’s training dataset. This approach 
ensured the feasibility and robustness of the model. The following ex-
perimental steps were conducted to evaluate the model’s performance:

1. First, unclassified TENG electrode materials were input into the 
model. Under unsupervised conditions, the model automatically 
classified the positive and negative TENG electrode materials 
with 100% accuracy. Additionally, it classified the materials’ 
ability to gain and lose electrons, also achieving 100% accu-
racy. This classification capability established a foundation for 
subsequent performance predictions.

2. Next, the model predicted the output performance of these ma-
terials and ranked them. It achieved an accuracy of 98%, with 
results closely aligning with the electrostatic sequence table. 
This high level of accuracy demonstrated the model’s reliability 
in performance prediction.

3. Subsequently, the model was tested for its ability to evaluate 
the impact of various doping materials on TENG output per-
formance. The results provided valuable insights into selecting 
effective doping materials to enhance TENG performance, such 
as identifying specific doping materials and their corresponding 
effects on output efficiency.

4. Finally, the model was used to predict the output trends of TENG 
under randomly selected doping ratios. The predictions were 
highly consistent with the observed experimental trends, further 
validating the model’s reliability and applicability for optimizing 
doping ratios.

To evaluate the stability and robustness of the model’s predictions, 
we performed a statistical analysis on the predicted energy densities. 
Specifically, we used 10-fold Monte Carlo cross-validation to assess 
the variability in the predicted results. In each iteration, the data 
were randomly split into training and validation sets, and the model 
was retrained to predict energy densities for each material-dopant 
combination.

For each prediction, the mean (𝜇) and standard deviation (𝜎) of 
the predicted energy densities were calculated using the following 
8 
Table 5
 Comparison between the model-predicted and experimentally measured energy densi-
ties (J/cm2) for various polymer-doped materials. The percentage deviation quantifies 
the accuracy of the model relative to experimental values. 
 Material Predicted energy density Experimental Percentage deviation 
 (Polymer-doping) (J/cm2) (J/cm2) (%)  
 PTFE-7% Ag 1.12 1.05 6.25  
 PVDF-4% TiO2 0.63 0.62 1.59  
 FEP-3% Ag 0.63 0.59 6.35  
 PS-5% Al 0.61 0.57 6.56  
 PET-5% TiO2 0.54 0.51 5.55  
 PI-4% TiO2 0.53 0.49 7.55  

formulas: 

𝜇 = 1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖, and (1)

𝜎 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝜇)2, (2)

where 𝑦𝑖 represents the predicted energy density for the 𝑖th iteration, 
and 𝑛 is the total number of predictions (in our case, 𝑛 = 10).

Additionally, the 95% confidence interval (CI) was calculated to 
quantify the uncertainty in the predictions. The confidence interval is 
given by: 
CI = 𝜇 ± 𝑡(0.025,(𝑛−1)) ⋅

𝜎
√

𝑛
, (3)

where 𝑡(0.025,(𝑛−1)) is the critical value from the 𝑡-distribution with (𝑛−1)
degrees of freedom. This confidence interval provides a range within 
which we expect the true value of the energy density to fall with 95% 
confidence.

Our analysis showed that most of the predicted energy densities 
exhibited small standard deviations, typically below 0.05 J/cm2, indi-
cating that the model’s predictions are stable and reliable. The con-
fidence intervals for these predictions were narrow, reflecting low 
uncertainty in the model’s output. However, for some material-dopant 
combinations, such as Ag-doped PTFE and TiO2-doped PVDF, the stan-
dard deviations were higher, and the confidence intervals were wider, 
suggesting that the model’s predictions are more sensitive to dopant 
concentrations and material properties for these systems.

Potential sources of uncertainty in the model’s predictions include 
noise in the training dataset, which originates from variations in ex-
perimental conditions across different studies; the simplifications made 
in the model, such as the exclusion of factors like surface morphology; 
and the sensitivity of the model to hyperparameter tuning, particularly 
during the early stages of training. These factors contribute to the 
variability in the predictions and are addressed in ongoing work, where 
we aim to apply Bayesian neural networks to better quantify and 
incorporate prediction uncertainty.

Despite these sources of uncertainty, the findings highlight the 
accuracy and efficiency of the model in classifying materials, predicting 
performance, and providing insights into doping strategies. The val-
idated model offers a robust framework for advancing TENG design 
and optimization, with significant implications for both experimental 
research and industrial applications.

3. Conclusions

In this study, we developed a robust ML-driven model to optimize 
the performance of TENGs by leveraging GNNs. This approach sys-
tematically integrates experimental and computational data to predict 
electrode material properties, identify optimal doping strategies, and 
establish structure–property relationships. The model demonstrated 
exceptional accuracy in material classification and performance predic-
tion, achieving up to 0.83 J/cm2 energy density with 4% SiO -doped 
2
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PTFE paired with a Cu electrode. Key findings include a 65.7% en-
ergy density enhancement for aluminum-doped PTFE and an 85.7% 
improvement for fluorine-doped PTFE, highlighting the critical role 
of doping materials and concentrations. Based on these findings, we 
proposed a framework that accelerates material discovery, reduces 
experimental costs, and provides novel insights into the fundamental 
determinants of TENG performance. Additionally, the integration of ad-
vanced GNN methodologies enables high-throughput screening of ma-
terial combinations, offering a transformative approach to intelligent 
material design. Despite its advantages, the study is limited by reliance 
on available experimental data for model validation and challenges 
in data interpretability. Future work will focus on refining the GNN 
model, validating additional materials experimentally, and applying the 
approach to real-world TENG devices. This work not only advances the 
field of sustainable energy harvesting but also establishes a founda-
tion for the development of next-generation self-powered systems and 
environmentally friendly energy technologies.

4. Experimental section

4.1. Machine learning techniques and their application in TENGs

ML, a subfield of artificial intelligence, enables machines to learn 
from data and improve performance over time without explicit pro-
gramming. ML algorithms identify patterns in data to make predictions 
or decisions, eliminating the need for task-specific programming [40]. 
ML can be broadly categorized into three types: supervised learn-
ing [41–44], unsupervised learning [45,46], and reinforcement learn-
ing [47,48], each suited to specific application scenarios. Based on 
these frameworks, ML has become a focus of research in optimizing 
TENG performance.

In supervised learning, models are trained on labeled data, where 
both input features and corresponding outputs are provided. The ob-
jective is to learn a mapping from inputs to outputs, which can subse-
quently be used to predict outputs for unseen data [49]. For instance, in 
regression tasks, the aim is to find a function that predicts a continuous 
output based on input features, whereas in classification tasks, the 
goal is to assign data to predefined categories [50,51]. The supervised 
learning model can be mathematically expressed as: 

𝑦 = 𝑓 (𝑥; 𝜃), (4)

where 𝑥 represents the input features, 𝑦 is the output, and 𝜃 denotes 
the parameters learned from the training data [52]. This model is 
widely utilized in predictive modeling tasks, including the prediction 
of material properties. In TENG applications, supervised learning can 
be employed to predict material properties such as energy density and 
mechanical strain response.

Unsupervised learning, in contrast, deals with unlabeled data. The 
goal is to uncover hidden structures or patterns within the data [53]. 
Common techniques include clustering, which groups data points based 
on similarity, and dimensionality reduction, which reduces the number 
of features in a dataset while preserving critical information. The 
clustering algorithm can be defined as: 

𝐽 =
𝑛
∑

𝑖=1
‖𝑥𝑖 − 𝜇𝑘𝑖‖

2, (5)

where 𝑥𝑖 is a data point, 𝜇𝑘𝑖  represents the centroid of cluster 𝑘𝑖, and 
𝐽 is the cost function to be minimized. Minimizing 𝐽 yields optimal 
clustering results. In TENG applications, unsupervised learning can 
identify hidden patterns in material performance, guiding material 
selection.

Reinforcement learning is another paradigm in which an agent 
learns to make decisions by interacting with its environment. The agent 
receives feedback in the form of rewards or penalties based on its 
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actions, enabling it to adapt its strategy over time. The value function 
𝑉  in reinforcement learning is expressed as: 

𝑉 (𝑠) = E

[ ∞
∑

𝑡=0
𝛾 𝑡𝑅𝑡

]

, (6)

where 𝑉 (𝑠) is the value of being in state 𝑠, 𝑅𝑡 is the reward received 
at time step 𝑡, and 𝛾 is the discount factor that determines the weight 
of future rewards. In TENG optimization, reinforcement learning could 
be applied to optimize dynamic operating conditions by simulating 
environmental feedback to enhance energy collection efficiency.

In the context of TENGs, ML techniques are primarily utilized 
to predict energy density, a critical parameter for optimizing device 
performance and ensuring efficient energy harvesting. Fig.  5 illustrates 
a structured workflow for implementing ML in this domain, focusing on 
the prediction of negative electrode output performance. The process 
begins with material synthesis (Fig.  5(a)), where candidate electrode 
materials are selected based on prior studies. Subsequently, the ex-
perimental data are systematically collected and analyzed (Fig.  5(b)) 
to construct a comprehensive dataset for model training. This dataset 
is then integrated into a CNN model (Fig.  5(c)), which is trained to 
identify correlations between material properties and output perfor-
mance. Finally, the trained model predicts performance metrics, and 
these predictions are validated against experimental results (Fig.  5(d)). 
This data-driven workflow streamlines the optimization of electrode 
materials, enhancing the predictive power of ML in energy harvesting 
research.

ML models, such as regression or neural networks, can be trained on 
experimental data, where inputs include material properties, mechani-
cal stresses, and other operational conditions, and the target output is 
the predicted energy density. Such models can be represented as: 
𝐸𝑑 = 𝑓 (𝑥1, 𝑥2,… , 𝑥𝑛; 𝜃), (7)

where 𝑓 is the learned function, 𝑥1, 𝑥2,… , 𝑥𝑛 denote the input features 
(e.g., material properties, stress levels), and 𝜃 represents the parame-
ters learned during training. This approach facilitates the optimization 
of TENG design and operation, thereby enhancing energy harvesting 
efficiency under varying conditions.

4.2. Data collection and machine learning applications in TENGs

For ML algorithms to be effective in TENGs, it is crucial to gather 
accurate and comprehensive data. The primary types of data include 
voltage, current, and energy density, which are essential for construct-
ing predictive models aimed at optimizing TENG performance. These 
measurements are typically obtained through sensors that capture the 
electrical output and mechanical behavior of the device. In addition 
to experimental data, open-access literature serves as a complemen-
tary source of information, further enriching ML models. To achieve 
efficient data collection, we developed an automated approach that 
extracts relevant information from publicly available literature.

By employing Python-based scripts, we batch-scraped and down-
loaded relevant publications from public literature databases, resulting 
in a dataset comprising approximately 6,000 data points. This au-
tomated approach not only improved data collection efficiency but 
also enhanced dataset diversity, enabling more robust ML analysis. 
These datasets supported the analysis of key variables such as voltage, 
current, and energy density.

The voltage (𝑉 ) generated by a TENG arises directly from the 
triboelectric effect and the mechanical stress applied to the materials. It 
is influenced by factors such as material selection, device geometry, and 
the rate of mechanical motion. Monitoring voltage allows researchers to 
evaluate the electrical output of the device under varying conditions, 
thereby refining TENG design and operation. In addition to voltage, 
current is another critical variable that reflects the energy generated 
by the TENG.
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Similarly, the current (𝐼) is another critical variable that provides 
insights into the energy generated by the TENG. Current is proportional 
to the rate of charge flow induced by the triboelectric effect. Measuring 
the current enables researchers to assess device efficiency and monitor 
performance over time. For example, in self-powered sensors, stable 
current output is crucial for reliable data transmission.

In addition to voltage and current, energy density, 𝐸𝑑 , is a key 
metric collected during experiments. The energy density in TENGs can 
be calculated from the measured voltage and capacitance using the 
formula: 
𝐸𝑑 = 1

2
𝐶𝑉 2, (8)

where 𝐶 is the capacitance and 𝑉  is the voltage [28]. By collecting 
energy density data under various operational conditions, researchers 
can predict the energy output of TENGs across different scenarios. 
These measurements collectively form the core dataset for training ML 
models, enabling the prediction of optimal energy harvesting condi-
tions.

The dataset derived from these measurements is essential for train-
ing ML models. It enables the models to identify intricate relationships 
among input variables, such as material properties, mechanical stresses, 
and environmental conditions, and their effects on energy output. 
However, data collection presented several challenges, particularly 
in real-world conditions where factors such as noise, environmen-
tal fluctuations, and sensor calibration discrepancies can compromise 
measurement accuracy. Despite these hurdles, advancements in sensor 
technology and data acquisition techniques are progressively improving 
the quality and reliability of the data gathered for TENG systems. For 
instance, improved temperature compensation in sensors has reduced 
the impact of environmental fluctuations on data accuracy. These im-
provements enable more robust model training, thereby enhancing the 
predictive capabilities of ML algorithms in this field.

4.3. Machine learning models for TENG optimization

In our work, we developed two distinct ML models to optimize the 
performance of TENGs. These models include an unsupervised learning 
model and a GNN model, each targeting different aspects of TENG per-
formance. Together, these models provided complementary approaches 
for improving material selection and predicting energy output. The 
following sections detail the implementation and application of these 
models.

4.3.1. Unsupervised learning model: deep embedded clustering
The unsupervised model utilized the deep embedded clustering 

(DEC) method, which combines deep learning and clustering in an 
unsupervised learning model. This approach enables the identification 
of underlying patterns in the data without requiring prior labels [54]. 
The primary goal of this model was to classify materials based on their 
suitability as positive or negative electrodes in TENGs.

DEC operates by jointly learning feature representations and clus-
tering assignments. Its objective is to minimize the distance between 
similar data points while maximizing the separation between different 
clusters. Mathematically, this is expressed as: 
𝐷𝐸𝐶 = 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝛼 ⋅ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟, (9)

where 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 represents the reconstruction loss used to learn fea-
ture representations, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is the clustering loss that ensures samples 
within the same cluster are grouped closely, and 𝛼 is a regularization 
parameter balancing the two losses.

The clustering loss function, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟, is defined as: 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = −
𝑁
∑

𝑖=1
log

(

𝑒𝑠𝑘𝑖 (𝑥𝑖)
∑𝐾

𝑘=1 𝑒
𝑠𝑘(𝑥𝑖)

)

, (10)

where 𝑠𝑘𝑖 (𝑥𝑖) represents the score assigned to cluster 𝑘𝑖 for sample 𝑥𝑖, 
and 𝐾 is the total number of clusters. This loss function encourages the 
10 
model to maximize the score for the correct cluster while minimizing 
the distance between similar data points [55].

Applying this method to our material dataset, the model effec-
tively classified materials into two groups: those suitable as positive 
electrodes and those better suited as negative electrodes, based on 
their inherent properties. This classification provided a foundation for 
subsequent energy density prediction.

With the increasing complexity of material classification problems, 
traditional clustering algorithms often struggle with high-dimensional 
datasets, necessitating the exploration of more advanced methods. 
To further demonstrate the effectiveness of the DEC method for ma-
terial classification, we conducted a comparative analysis between 
DEC and two traditional clustering algorithms, namely K-means and 
density-based spatial clustering of application with noise (DBSCAN). 
The comparison was based on several performance metrics, including 
classification accuracy, silhouette score, and computational complexity. 
These comparative results are summarized in Table  2. We evaluated the 
clustering performance of each method using the same material-dopant 
dataset. The results revealed that DEC significantly outperforms both 
K-means and DBSCAN, achieving higher classification accuracy and a 
better-defined clustering structure. Specifically, DEC achieved a higher 
silhouette score, reflecting the compactness and separation of the clus-
ters, while K-means and DBSCAN struggled with the high-dimensional 
and complex nature of the material data.

These results highlight the distinct advantages of DEC in material 
classification tasks, which can be attributed to its ability to learn feature 
representations during the clustering process. This enables DEC to 
capture complex, non-linear relationships between material properties 
and performance metrics. In contrast, K-means and DBSCAN are limited 
in their ability to model such intricate relationships, particularly in 
high-dimensional feature spaces. This makes DEC more suitable for 
handling the intricate and varied characteristics of the material-dopant 
combinations in our dataset.

4.3.2. Graph neural network model: energy density prediction
The second model employed is a GNN, which is particularly ef-

fective for modeling relational data. As depicted in Fig.  6, the GNN 
architecture comprises four graph convolutional layers, four attention-
based pooling layers, and seven fully connected layers. To improve 
generalization and mitigate overfitting, batch normalization and ran-
dom dropout techniques are applied between layers. GNNs process 
graph-structured inputs, where nodes represent materials and edges 
encode relationships between them, defined by their physical properties 
or interactions within the TENG system. This architecture enables the 
efficient modeling of complex material interactions, providing a robust 
model for predicting energy density and optimizing TENG performance.

In our approach, the choice of GNN architecture, particularly the 
number of layers, was guided by the nature of the dataset and the 
underlying relationships between material-dopant combinations. We 
believe the data inherently exhibits clear two-dimensional characteris-
tics due to the interactions between the elements in the dataset, which 
makes the graph structure particularly suitable for capturing these 
relationships. GNNs excel in modeling the connections between nodes 
and edges, allowing the network to learn feature representations that 
better describe the performance characteristics of specific materials.

The primary objective of the GNN model is to predict the energy 
density (𝐸𝑑 , as defined in Eq.  (8)) of various materials when integrated 
into a TENG. The GNN predicts energy density by aggregating informa-
tion from neighboring materials (nodes) and updating the node features 
based on both material properties and interactions.

The core of the GNN is the message-passing mechanism, which en-
ables each node (material) to aggregate information from its neighbors 
and update its state. The update rule is written as: 

ℎ(𝑘+1)𝑖 = 𝜎
⎛

⎜

⎜

𝑊 (𝑘)ℎ(𝑘)𝑖 +
∑ 1

𝑐𝑖𝑗
𝑊 (𝑘)ℎ(𝑘)𝑗

⎞

⎟

⎟

, (11)

⎝

𝑗∈ (𝑖)
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where ℎ(𝑘+1)𝑖  is the updated feature for node 𝑖, ℎ(𝑘)𝑖  is the current feature, 
 (𝑖) denotes the neighbors of node 𝑖, 𝑊 (𝑘) is the weight matrix for the 
𝑘th layer, 𝜎 is a nonlinear activation function (e.g., ReLU), and 𝑐𝑖𝑗 is a 
normalization factor for the edges between nodes 𝑖 and 𝑗.

The GNN model is particularly effective in capturing complex re-
lationships between materials, such as the effects of material com-
binations on energy output, which are challenging to model using 
traditional ML methods. By training the GNN on a large dataset of ma-
terial properties and corresponding energy densities, we can predict the 
energy density of new materials that have not been directly measured.

Together, these two ML models – DEC for material classification and 
GNN for energy density prediction – offer powerful tools for optimizing 
TENG performance by improving material selection and predicting 
energy output under varying conditions [52].

4.4. Training and evaluation of DEC and GNN for TENG optimization

The training process for the DEC model and the GNN model was 
conducted using a large dataset comprising experimental data and 
data sourced from open-access literature. The dataset was carefully 
preprocessed to ensure consistency and eliminate outliers, enabling the 
models to learn from high-quality, representative data. These two mod-
els, targeting material classification and energy density prediction, pro-
vided complementary approaches for optimizing TENG performance. 
The following sections describe the training processes and evaluation 
results for both models.

4.4.1. Training the DEC model
The DEC model was trained using an unsupervised approach, aiming 

to optimize feature representations and clustering assignments simulta-
neously. The training process employed reconstruction loss and cluster-
ing loss, with a regularization parameter 𝛼 fine-tuned through cross-
validation to achieve optimal performance. The model was trained 
with a batch size of 32 using the Adam optimizer, starting with an 
initial learning rate of 10−3, which was subsequently reduced based 
on validation loss.

During training, clustering accuracy was evaluated by comparing 
the predicted labels with the ground truth labels (i.e., whether the 
materials were categorized as suitable for the positive or negative 
electrode). After several epochs, the model successfully divided the 
materials into two distinct groups, demonstrating its ability to learn 
from unlabeled data and make meaningful classifications based on 
material properties. This highlights the DEC model’s capability as a fast 
and effective tool for identifying suitable materials for TENG electrodes.

4.4.2. Training the GNN model
The GNN model was trained to predict the energy density of mate-

rials used in TENGs. Graph-structured data was utilized, where nodes 
represented materials and edges encoded relationships between mate-
rials. The features of each node included various material properties, 
such as mechanical strength, triboelectric properties, and capacitance.

The training objective was to perform node classification with the 
energy density 𝐸𝑑 as the target variable. The model employed a graph 
convolutional network (GCN) layer, and the loss function was defined 
as the mean squared error (MSE) between the predicted and true energy 
density values: 

𝐺𝑁𝑁 = 1
𝑁

𝑁
∑

𝑖=1

(

𝐸(𝑖)
𝑑𝑝𝑟𝑒𝑑

− 𝐸(𝑖)
𝑑𝑡𝑟𝑢𝑒

)2
, (12)

where 𝐸𝑑𝑝𝑟𝑒𝑑  and 𝐸𝑑𝑡𝑟𝑢𝑒  are the predicted and true energy densities for 
the 𝑖th material, respectively. The Adam optimizer was used for training 
with a learning rate of 10−4 and a batch size of 64.

The training demonstrated that the GNN model effectively learned 
the complex relationships between material properties and energy den-
sity. After 100 epochs, the model’s performance was evaluated using 
the root MSE (RMSE), which indicated that the GNN could accurately 
predict energy densities, even for materials that had not been di-
rectly measured. This result underscores the GNN model’s potential for 
guiding material design in TENG systems.
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4.4.3. Evaluation and performance
The performance of both models was rigorously assessed through 

cross-validation and evaluation on an independent test set. The DEC 
model achieved a high classification accuracy of 89% in distinguishing 
between positive and negative electrode materials, significantly outper-
forming conventional clustering methods. Additionally, the GNN model 
achieved an RMSE of 0.12 in predicting energy density, highlighting 
its effectiveness in accurately forecasting energy density values across 
a diverse range of materials.

Overall, the results confirmed the high effectiveness of both the 
DEC and GNN models in optimizing TENG performance. These models 
provided valuable insights into material selection and serve as reli-
able tools for designing more efficient TENG systems by accurately 
predicting energy output under various operational conditions.

With the increasing complexity of material classification problems, 
traditional ML algorithms often struggle to capture intricate, non-
linear relationships in high-dimensional datasets. This necessitates the 
exploration of advanced models like GNNs. To further validate the 
effectiveness of our GNN-based approach, we conducted a compara-
tive study with several traditional ML algorithms, including Random 
Forests, Gradient Boosting Trees (GBT), and Feedforward Neural Net-
works (FNN). The comparison focused on key performance metrics, 
such as prediction accuracy, computational complexity, and model 
interpretability. These comparative results are summarized in Table  3, 
providing a clear overview of the performance differences among the 
models. All models were trained on the same material-dopant dataset. 
The results showed that the GNN outperformed traditional methods, 
achieving a higher R-squared value of 0.98 compared to 0.85 for 
Random Forests, 0.88 for GBT, and 0.81 for FNN. This demonstrates the 
GNN’s superior predictive accuracy, particularly in capturing complex, 
non-linear relationships between material properties and performance 
metrics, which simpler models like FNN struggled to model effectively.

Despite its superior predictive accuracy, the GNN exhibited higher 
computational complexity and longer prediction times. The prediction 
time for the GNN was 50 s, compared to 12 s for Random Forests, 
25 s for GBT, and 30 s for FNN. This highlights a trade-off between 
accuracy and computational cost. Additionally, while the GNN excels 
in predictive performance, its interpretability is moderate compared to 
Random Forests and FNN, which offer greater ease of interpretation.

The results from this comparative analysis demonstrate that the 
GNN-based model is particularly well-suited for capturing complex 
relationships in high-dimensional feature spaces, offering a notable 
improvement in prediction accuracy over traditional methods. How-
ever, the increased computational time and moderate interpretability 
highlight areas where traditional models may still offer advantages, es-
pecially in scenarios prioritizing model simplicity and interpretability.

To ensure the reliability and robustness of the GNN model’s per-
formance in material classification and doping optimization, we per-
formed a detailed dataset partitioning and cross-validation procedure. 
The dataset was randomly split into training, validation, and test sets 
with the following proportions: 70% for training, 15% for validation, 
and 15% for testing (Table  4). The training set was used to train the 
model, the validation set was employed for hyperparameter tuning and 
to prevent overfitting, and the test set was used to evaluate the final 
performance of the model on unseen data.

Furthermore, to enhance the robustness of our results, we imple-
mented k-fold cross-validation (with k = 5) during the training phase. 
The dataset was randomly divided into five equal parts, and the model 
was trained and validated on different subsets of the data, with each 
fold serving as the validation set once. The results were averaged across 
all folds to provide a more reliable estimate of the model’s general-
izability and performance. This procedure is crucial for assessing the 
stability of the model across different subsets of data and ensuring that 
the reported performance is not due to overfitting on a specific data 
split.
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Table  4 summarizes the dataset partitioning and cross-validation 
procedure, along with the performance of the model on each cor-
responding dataset. The GNN model achieved excellent performance 
across all subsets of the dataset, with an R-squared value of 0.98 on 
the training set, 0.92 on the validation set, and 0.90 on the test set. 
These results demonstrate the model’s robustness and generalizability, 
as it performed consistently well across different data splits. The slight 
decrease in performance from the training set to the test set is typical 
and indicates the model’s ability to generalize effectively to unseen 
data.

In our study, although experimental validation focused primarily 
on the optimal material/doping system, all model predictions across 
various doping ratios and materials were conducted under rigorously 
standardized conditions to ensure fairness and robustness. Specifically, 
during both simulation and experimental validation, we maintained 
constant geometric dimensions (electrode area: 5 × 5 cm2), friction 
mode (contact-separation at 2.5 Hz), and environmental parameters 
(5% relative humidity, 25 ◦C). These controlled settings were deliber-
ately selected to eliminate variability from non-material-related factors, 
thereby isolating the influence of material composition and doping ratio 
on device performance. This approach provided a consistent basis for 
all subsequent comparative analyses.

Building on these standardized conditions, when referring to the 
optimal material/doping system (for example, 7% Ag-doped PTFE), 
we highlight the optimized combination of base material and dopant, 
as identified by our predictive model. All comparative experiments, 
including prototype device fabrication and key performance tests, were 
performed under identical conditions to enable a fair and accurate 
assessment of the effects of doping.

We acknowledge that broader comparative studies under varied 
conditions could provide additional insights. However, in this work, 
our primary objective was to isolate and elucidate the role of doping 
as the principal variable, thereby enabling a clearer interpretation of its 
influence on TENG performance. We believe that this focused approach 
enhances the reliability and scientific value of our findings.
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