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The well-known and celebrated first-primer classical analysis of a one-dimensional inversion-asymmetric
assembly of electric point charges interconnected by mechanical springs shows that the system is piezoelectric
and characterized by a parameter-dependent but constant piezoelectric coefficient d defined as the ratio between
the change in system length and the change in electric field. The former system is the simplest system displaying
the phenomenon of piezoelectricity. We demonstrate that a quantum-mechanical analysis of the Hamiltonian
for the same system of electric point charges and mechanical springs leads to a piezoelectric constant that
depends not only on the system parameters but also on the eigenstate. Hence, the piezoelectric constant,
determined as the ratio between the change in the expectation value of the system length and the change in
the applied electric field, is quantized. It is demonstrated analytically and numerically, which is a necessary
condition, that the quantized piezoelectric constant vanishes if the system Hamiltonian is inversion symmetric.
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I. INTRODUCTION

Piezoelectricity is a well-known phenomenon in materials
lacking inversion symmetry [1–4] and finds use in numerous
fields [5–11] such as biology, medicine, maritime applica-
tions, nondestructive testing, instrumentation, surveillance,
and nanotechnology [12–21]. The classical mathematical in-
troduction to piezoelectricity is by virtue of a simple system
of electric point charges interconnected by mechanical springs
[22]. It is demonstrated that an inversion-asymmetric system
may display a spontaneous polarization, i.e., a nonzero polar-
ization in the absence of external fields, in addition to a change
in the polarization proportional to the strength and sign of an
external mechanical field. Similarly, the exertion of an electric
field may lead to the generation of mechanical strain and stress
proportional to the strength and sign of the electric field. In
this classical toy-model representation, the piezoelectric con-
stant is a system constant. Likewise, in real materials (solids),
the piezoelectric constant is a third-rank tensor [23,24] reflect-
ing the fact that the piezoelectric effect depends on the applied
electric-field (electric-displacement) vector component or the
applied mechanical-strain (mechanical-stress) tensor compo-
nent. With the modern theory of piezoelectricity introduced
about three decades ago, Resta and Vanderbilt with co-
workers [25–28] applied the geometric phase (Berry phase)
[29–33] to evaluate cyclic adiabatic-polarization changes to
accurately determine the piezoelectric material constants [34]
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using atomistic methods such as the density-functional theory
[35].

Recently, there has been substantial activity on nanome-
chanical resonators [36,37]. Piezoelectric nanomechanical
resonators are instrumental for applications in highly sen-
sitive devices where extremely high Q factors (more than
10 million) are required [36]. Piezoelectricity allows vibra-
tional resonances of a nanomechanical resonator based on,
e.g., AlN [38–41] to be transformed into electrical signals
which is necessary for applications in quantum computing
for measuring properties of qubits at room temperature and
development of quantum processing units. The extreme preci-
sion of piezoelectric nanomechanical resonators [36,42] also
renders them suitable for applications where low noise and
long coherence times are required, such as mirror suspensions,
quantum-cavity optomechanical devices, or nanomechanical
sensors. The latter examples are all useful for nanodevices like
LEDs and photonics computing [39].

The present work adds new flavor to the general theory of
piezoelectricity. We demonstrate, through the construction of
a quantum version of Auld’s toy model, that the piezoelectric
constant of a small-scale system of charges and springs is
quantized in the same way as the energy and other observables
are. Hence, the concept of quantum piezoelectricity and a
quantized piezoelectric constant is discussed in a simple way
that allows direct experimental verification from the study of
individual molecules or periodic structures lacking inversion
symmetry. The application of the theory to larger-scale sys-
tems to determine collective modes is a very important and
interesting extension. A natural way to address the latter prob-
lem would be to use the linear combination of atomic orbitals
(LCAO) method or the tight-binding (TB) method where
the "atom" is a single nanoscale system. Hopping between
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FIG. 1. The general two-particle system consisting of two point
charges q1 and q2 with coordinates x1 and x2, respectively, connected
by a spring with spring constant K . The system permittivity is ε.

"atoms" in a second-quantized formulation leads to extended
(crystal) eigenstates for which crystal-like piezoelectric prop-
erties can be addressed. Using our toy system as the "atom,"
the crystal becomes a functionalized/artificial crystal, but it
should be noted that the properties of real systems can be
mimicked by appropriately fitting the spring constants and
point-charge values.

A main reasoning behind this work is to avoid computa-
tionally intensive methods such as density-functional theory.
Instead, our model aims to provide qualitative insight into the
nature of piezoelectricity and, most importantly, to demon-
strate for a simple system that the piezoelectric constant
becomes quantized. Note also that the Berry-phase method is
applicable to Bloch periodic systems (crystals) and therefore
not suitable to address the present case of simple few-particle
systems.

II. CLASSICAL PIEZOELECTRICITY

Consider the system shown in Fig. 1 consisting of two point
charges q1 and q2 and a spring with spring constant K . The
forces F1 and F2 on particle 1 and 2, respectively, are

F1 = K (x2 − x1 − l0) − q1q2

4πε

1

(x2 − x1)2 , (1)

F2 = −K (x2 − x1 − l0) + q1q2

4πε

1

(x2 − x1)2 , (2)

where ε is the permittivity and l0 is the undeformed spring
length. Note that the Coulomb force considered in this toy
case is a one-dimensional (1D) simplification of the real three-
dimensional (3D) electrostatic force between point charges.
Assume q2 = −q1 = q. Then,

F1 = K (x2 − x1 − l0) + q2

4πε

1

(x2 − x1)2 , (3)

F2 = −K (x2 − x1 − l0) − q2

4πε

1

(x2 − x1)2 , (4)

and the system polarization is

P = q1x1 + q2x2 = q(x2 − x1). (5)

In equilibrium, the forces F2,eq = −F1,eq are both zero
whereby the equilibrium coordinate difference (x2 − x1)eq can
be determined. Since the equation determining (x2 − x1)eq is
cubic, two possibilities can arise depending on the system pa-
rameters: (i) Three real solutions or (ii) one real solution and
two complex-conjugate solutions. The physically interesting

FIG. 2. The two-particle piezoelectric system consisting of two
point charges q and −q connected by a spring.

solutions are the real solutions. The cubic equation is

K (x2 − x1)3
eq − Kl0(x2 − x1)2

eq + q2

4πε
= 0. (6)

Applying an electric field

Consider now the inversion-asymmetric system q2 =
−q1 = q (Fig. 2). If an external electric field E is applied
to the system, force equilibrium on the two particles are
expressed as

F1 − qE = 0, (7)

F2 + qE = 0. (8)

If the applied electric field is small, a first-order Taylor expan-
sion is a good approximation,

F1 = F1,eq + ∂F1

∂x1

∣∣∣∣
eq

δx1 + ∂F1

∂x2

∣∣∣∣
eq

δx2 = ∂F1

∂x1

∣∣∣∣
eq

δx1 + ∂F1

∂x2

∣∣∣∣
eq

δx2, (9)

F2 = F2,eq + ∂F2

∂x1

∣∣∣∣
eq

δx1 + ∂F2

∂x2

∣∣∣∣
eq

δx2 = ∂F2

∂x1

∣∣∣∣
eq

δx1 + ∂F2

∂x2

∣∣∣∣
eq

δx2. (10)

Equations (3)–(4) yield, for the partial derivatives,

∂F1

∂x1

∣∣∣∣∣
eq

= −K − 2q2

4πε

1

(x2,eq − x1,eq )3
(−1)

= −K + q2

2πε

1

(x2,eq − x1,eq )3
, (11)

∂F2

∂x2

∣∣∣∣
eq

= −K + 2q2

4πε

1

(x2,eq − x1,eq )3
(1) = ∂F1

∂x1

∣∣∣∣
eq

, (12)
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∂F1

∂x2

∣∣∣∣
eq

= K − 2q2

4πε

1

(x2,eq − x1,eq )3
(1) = −∂F1

∂x1

∣∣∣∣
eq

, (13)

∂F2

∂x1

∣∣∣∣
eq

= K + 2q2

4πε

1

(x2,eq − x1,eq )3
(−1) = −∂F1

∂x1

∣∣∣∣
eq

, (14)

and Eqs. (7)–(8) lead to the same equation

Aδx1 − Aδx2 = qE, (15)

where F1,eq = −F2,eq = 0 is used, and A is defined as

A = ∂F1

∂x1

∣∣∣∣
eq

= ∂F2

∂x2

∣∣∣∣
eq

= −∂F1

∂x2

∣∣∣∣
eq

= −∂F2

∂x1

∣∣∣∣
eq

. (16)

The change in the system length δL now becomes

δL = δ(x2 − x1) = −qE
A

, (17)

where Eq. (15) is used in obtaining the last equality.
Note that system stability against deformations requires

A = ∂F1

∂x1

∣∣∣∣
eq

= ∂F2

∂x2

∣∣∣∣
eq

< 0. (18)

III. SPONTANEOUS POLARIZATION
AND PIEZOELECTRICITY

In general, there is a spontaneous polarization given by

Pspon = q1x1,eq + q2x2,eq = q(x2 − x1)eq = qLeq �= 0,

(19)

and its value is determined by solving Eq. (6) for
Leq = (x2 − x1)eq.

The piezoelectric constant d is determined as the change in
system length divided by the change in electric field,

d = δL
δE = −qE

A
/E = − q

A
, (20)

which is nonzero. In obtaining the second equality, use is
made of Eq. (17). Note that d > 0 if q > 0 since stability
requires A < 0. Similarly, d < 0 if q < 0 due to the stability
criterion A < 0.

IV. QUANTUM PIEZOELECTRICITY

The Schrödinger equation for the simple system shown in
Fig. 1 is now solved so as to obtain its wave functions and
energies. Attention is given to the determination of the system
polarization as a function of an external electric field.

V. REDUCTION TO 1D GOVERNING EQUATIONS

Consider two charges q1 and q2 connected by a spring and
positioned at x1 and x2, respectively. A 1D assumption is made
for the Coulomb interaction,

VCou(x1 − x2) = q1q2

4πε

1

|x1 − x2| , (21)

where ε is the permittivity. The elastic coupling is described
by the potential term

VElas(x1 − x2) = 1
2 K ((x2 − x1) − l0)2 = 1

2 K (−(x1 − x2) − l0)2,

(22)

where l0 is the equilibrium length of the spring and K is the
spring constant. Considering further that the system is ex-
posed to an external electric field E directed along the positive
x axis, there is a third contribution to the total potential,

VElec(x1, x2) = −q1Ex1 − q2Ex2. (23)

The two-body Hamiltonian H now takes the form

Hψ =
[

− h̄2

2m1

∂2

∂x2
1

− h̄2

2m2

∂2

∂x2
2

+ VCou(x1 − x2)

+ VElas(x1 − x2) + VElec(x1, x2)

]
ψ (x1, x2)

= Eψ (x1, x2), (24)

where m1 (m2) is the mass of charge q1 (q2), ψ is the two-body
wave function, and E is the energy.

It is easy to rewrite the electric field potential as

VElec(x1, x2) = −q1Ex1 − q2Ex2

= γr (x1 − x2) + γc

(
m1x1 + m2x2

m1 + m2

)
, (25)

by fixing

γr = −q1E
m2

m1 + m2
+ q2E

m1

m1 + m2
, (26)

γc = −(q1 + q2)E . (27)

From standard quantum mechanics, the Hamiltonian in
x1, x2 can be transformed using the center-of-mass coordinate
XG = m1x1+m2x2

m1+m2
and the relative coordinate X = x1 − x2:

H = P2
G

2M
+ P2

2μ
+ VXG (XG) + VX (X ) ≡ HXG + HX , (28)

HXG = P2
G

2M
+ VXG (XG), (29)

HX = P2

2μ
+ VX (X ), (30)

VXG (XG) = γcXG, (31)

VX (X ) = q1q2

4πε

1

|X | + 1

2
K ((−X ) − l0)2 + γrX, (32)

where

PG = −ih̄
∂

∂XG
, (33)

P = −ih̄
∂

∂X
, (34)

M = m1 + m2, (35)

μ = m1m2

m1 + m2
. (36)
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FIG. 3. A schematic drawing of the (a) square and (b) rhombus domains in x1, x2 and X, XG coordinates, respectively. Also shown is the
ground state (not normalized) plotted within the two domains.

The original two-dimensional (2D) Hamiltonian H prob-
lem can now be split into two 1D Hamiltonian problems,1D

HXG |ψXG〉 = EXG |ψXG〉, (37)

HX |ψX 〉 = EX |ψX 〉, (38)

ψ = |ψXG〉 ⊗ |ψX 〉, (39)(
− h̄2

2M

∂2

∂X 2
G

+ VXG (XG)

)
ψXG = EXGψXG , (40)(

− h̄2

2μ

∂2

∂X 2
+ VX (X )

)
ψX = EX ψX , (41)

where

H |ψ〉 = (HXG + HX )(|ψXG〉 ⊗ |ψX 〉)

= HXG |ψXG〉 ⊗ |ψX 〉 + HX |ψXG〉 ⊗ |ψX 〉
= EXG |ψXG〉 ⊗ |ψX 〉 + EX |ψXG〉 ⊗ |ψX 〉
= (EXG + EX )|ψXG〉 ⊗ |ψX 〉 = (EXG + EX )|ψ〉, (42)

so that

E = EXG + EX . (43)

VI. BOUNDARY CONDITIONS

Assume an infinite barrier potential is imposed on the sys-
tem such that the total wave function vanishes when |x1| � L
or |x2| � L. The calculational domain in x1 − x2 space corre-
sponds to a square with side length 2L centered at the origin
([−L; L] × [−L; L]). Transforming x1, x2 into center-of-mass
and relative coordinates XG, X , the square is transformed into
a rhombus as shown in Fig. 3, i.e, for any function f (x1, x2),∫ L

−L
dx1

∫ L

−L
dx2 f (x1, x2)

=
∮

square
dx1 dx2 f (x1, x2)

=
∮

rhombus
dX dXG f (X, XG). (44)

In obtaining the second equality it was used that the
Jacobian satisfies | ∂ (x1,x2 )

∂ (X,XG ) | = 1.

Normalization

Wave functions are normalized such that∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 |ψ (x1, x2)|2

= lim
L→∞

∫ L

−L
dx1

∫ L

−L
dx2 |ψ (x1, x2)|2

= lim
L→∞

∮
square

dx1 dx2 |ψ (x1, x2)|2

= lim
L→∞

∮
rhombus

dXG dX |ψ (XG, X )|2

= lim
L→∞

∫ L

−L
dXG

∫ 2L

−2L
dX |ψ (XG, X )|2

= lim
L→∞

∫ L

−L
dXG |ψXG (XG)|2

∫ 2L

−2L
dX | ψX (X )|2 = 1,

(45)

which is guaranteed by fixing∫ ∞

−∞
dXG |ψXG (XG)|2 = 1,

∫ ∞

−∞
dX |ψX (X )|2 = 1. (46)

Note that in obtaining the fourth equality, it was used that
wave functions are zero outside the rhombus domain and that
the rhombus domain is a subset of [−L; L]XG × [−2L; 2L]X .

Similarly, it follows that the expectation value for any op-
erator that only depends on the relative coordinate f = f (X )
fulfills

〈 f (X )〉 =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 f (X )|ψ (x1, x2)|2

= lim
L→∞

∫ L

−L
dXG |ψXG (XG)|2

∫ 2L

−2L
dX f (X )| ψX (X )|2

=
∫ 2L

−2L
dX f (X )| ψX (X )|2, (47)
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and that the expectation value for any operator that only de-
pends on the center-of-mass coordinate g = g(XG) fulfills

〈g(XG)〉 =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 g(XG)|ψ (x1, x2)|2

= lim
L→∞

∫ L

−L
dXG g(XG)|ψXG (XG)|2

∫ 2L

−2L
dX |ψX (X )|2

=
∫ L

−L
dXG g(XG)| ψXG (XG)|2. (48)

VII. PIEZOELECTRICITY

With the above relations it is easy to derive some important
consequences for the system length in the presence of an
external electric field.

A. Inversion-asymmetric systems

When q2 = −q1 = q the system is inversion asymmetric
but uncharged as a whole.

The spontaneous polarization is determined as

〈Pspon〉i = 〈q2x2 + q1x1〉i,E=0

= q〈x2 − x1〉i,E=0 = q
∫ 2L

−2L
dX (−X ) |ψi,X (X )|2E=0,

(49)

which is generally nonzero since HX is neither even nor odd
in X (and therefore the eigenstates, distinguished by a sub-
script i, ψi,X |E=0 are not eigenstates of parity) while −X has
parity −1.

The change in system length with the application of a
(small) external electric field E is

�〈L〉i = 〈x2 − x1〉i,E − 〈x2 − x1〉i,E=0

= 〈−X 〉i,E − 〈X 〉i,E=0

=
∫ 2L

−2L
dX (−X ) |ψi,X (X )|2E

−
∫ 2L

−2L
dX (−X ) |ψi,X (X )|2E=0. (50)

It follows from Eqs. (26), (30), and (32) that HX and therefore
the eigenstates ψi,X depend on E . Since HX depends on E and
is neither even nor odd in X while −X has parity −1, the
change in system length with the application of an electric
field is generally nonzero, and the piezoelectric constant is
determined by

di = �〈L〉i

E . (51)

In Fig. 4 the first four eigenstates of the two-particle piezo-
electric system is plotted.

Our calculations reveal that the piezoelectric constant di

does not depend on the eigenstate i (see Fig. 5) which is not
given a priori. In the next section, we shall see that this result
does not apply to more complicated systems such as the four-
particle system.

B. Corollary on inversion-symmetric systems

It is easy to demonstrate that an inversion-symmetric sys-
tem is nonpiezoelectric if the system is uncharged as a whole
(which for our system implies that q2 = q1 = 0). Then the
system length 〈L〉i = 〈x2 − x1〉i,E is independent of the elec-
tric field E and the piezoelectric constant di = �〈L〉i

E is zero.
Further, the spontaneous polarization must be zero, since

〈Pspon〉i = 〈q2x2 + q1x1〉i,E=0 = 0. (52)

VIII. AULD’S SYSTEM IN THE QUANTUM CASE

Consider the structure of four point charges q1, q2, q3, q4

that Auld considered [22,23] (Fig. 6). The charges q2 and q3

cannot move and are positioned at a fixed distance l to the
left (q2) and to the right (q3), respectively. The charges q1 and
q4 can both move and are positioned at distances la and lb to
the left and right, respectively. A spring with spring constant
K and equilibrium length l0 is connected between charges q1

and q2. A similar spring is connected between charges q3 and
q4. The system Hamiltonian can be written as

H = − h̄2

2m1

∂2

∂l2
a

− h̄2

2m4

∂2

∂l2
b

+ 1

2
K (la − l − l0)2

+ 1

2
K (lb − l − l0)2 + q1q2

4πε

1

|la − l|
+ q1q3

4πε

1

|la + l| + q1q4

4πε

1

|la + lb|
+ q2q3

4πε

1

|2l| + q2q4

4πε

1

|lb + l| + q3q4

4πε

1

|lb − l| , (53)

where ε is the permittivity.
The spontaneous polarization operator of the system is

given by

Pspon = −q1la − q2l + q3l + q4lb. (54)

A. Nonpiezoelectric system

Consider the case q1 = q4 = q and q2 = q3 = −q where
q �= 0 (Fig. 7). The total charge of the system is zero and the
system is inversion symmetric. In this case, the Hamiltonian
takes the form

H = − h̄2

2m1

∂2

∂l2
a

− h̄2

2m4

∂2

∂l2
b

+ 1

2
K (la − l − l0)2

+ 1

2
K (lb − l − l0)2 − q2

4πε

1

|la − l|

− q2

4πε

1

|la + l| + q2

4πε

1

|la + lb| + q2

4πε

1

|2l|

− q2

4πε

1

|lb + l| − q2

4πε

1

|lb − l| . (55)

Observe that the Hamiltonian is invariant subject to the oper-
ation la ←→ lb.

The spontaneous polarization operator is

Pspon = −qla + ql − ql + qlb = q(lb − la), (56)

023220-5



WILLATZEN, ZHANG, AND WANG PHYSICAL REVIEW RESEARCH 7, 023220 (2025)

FIG. 4. The first four eigenstates plotted in X, XG coordinates.

and it clearly changes sign under the operation la ←→ lb.
Since the latter operation is a symmetry of the system, the
spontaneous polarization must be zero.

B. Piezoelectric system

Consider now the case q1 = −q4 = q and q2 = −q3 = −q
where q �= 0 (Fig. 8). The total charge of the system is zero
and the system is inversion asymmetric. In this case, the
Hamiltonian takes the form

H = − h̄2

2m1

∂2

∂l2
a

− h̄2

2m4

∂2

∂l2
b

+ 1

2
K (la − l − l0)2

+ 1

2
K (lb − l − l0)2 − q2

4πε

1

|la − l|
+ q2

4πε

1

|la + l| − q2

4πε

1

|la + lb|
− q2

4πε

1

|2l| + q2

4πε

1

|lb + l| − q2

4πε

1

|lb − l| . (57)

The spontaneous polarization operator is

Pspon = −qla + ql + ql − qlb = q(2l − la − lb). (58)

Note that the Hamiltonian and the spontaneous polarization
are both unchanged under the operation la ←→ lb so this sym-
metry does not force Pspon to be zero. In fact, the spontaneous
polarization in general depends on the eigenstate

〈Pspon〉i =
∫ L

−L
dla

∫ L

−L
dlb q(2l − la − lb) |ψi(la, lb)|2. (59)

IX. APPLICATION OF AN ELECTRIC FIELD

If an electric field E is applied to the system, the Hamilto-
nian changes by HE , where

HE = q1E la + q2E l − q3E l − q4E lb. (60)

023220-6
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FIG. 5. A plot of the change in system length as a function of the
electric field for the two-particle piezoelectric system. Note that the
piezoelectric coefficient di does not depend on the eigenstate which
is not given a priori.

A. Nonpiezoelectric system

For the nonpiezoelectric system,

HE = qE la − qE l + qE l − qE lb = −qE (lb − la). (61)

The unperturbed Hamiltonian H of the nonpiezoelectric
system (i.e., the Hamiltonian in the absence of HE ) is sym-
metric upon interchanging la and lb. Therefore, all eigenstates
of H are also eigenstates of the operator T that interchanges
la and lb [with eigenvalues +1 (symmetric states) and −1
(antisymmetric states)], i.e., T and H commute. All energy
eigenstates of H can then be assigned as symmetric or anti-
symmetric upon interchanging la and lb. Since HE is odd upon
interchanging la and lb, it follows from first-order perturba-
tion theory that all energies corresponding to nondegenerate
eigenstates ψ i

ND of the nonpiezoelectric system do not change
to first order in the electric field, i.e.,〈

ψ i
ND

∣∣HE
∣∣ψ i

ND

〉 = 0. (62)

To demonstrate that piezoelectric constants indeed are zero
for the present nonpiezoelectric system is difficult in the gen-
eral case. First of all, the operator L = la + lb has eigenvalue
+1 while HE has eigenvalue −1 upon interchanging la and lb.
The change in length due to the application of an electric field
is given by

�〈L〉i = 〈ψi,E |L|ψi,E〉 − 〈ψi,E=0|L|ψi,E=0〉
= 〈ψi,E − ψi,E=0|la + lb|ψi,E=0〉

+ 〈ψi,E=0|la + lb|ψi,E − ψi,E=0〉 + O(E2). (63)

For nondegenerate states, the first-order correction to the
eigenstates from HE is

|ψi,E〉 = |ψi,E=0〉 +
∑
k �=i

〈ψk,E=0|HE |ψi,E=0〉
Ei,E=0 − Ek,E=0

|ψk,E=0〉, (64)

where Ei,E=0 is the unperturbed energy of eigenstate |ψi,E=0〉.
Thus, the following applies for nondegenerate states:

|ψi,E=0〉 = symmetric function,

|ψi,E 〉 = |ψi,E=0〉 + an antisymmetric function of O(E ),

(65)

or

|ψi,E=0〉 = antisymmetric function,

|ψi,E 〉 = |ψi,E=0〉 + a symmetric function of O(E ), (66)

where "symmetric function" ("antisymmetric function")
means that the function is unchanged (changes sign) when
la and lb are interchanged. Since la + lb is symmetric upon
interchanging la and lb, it follows from Eq. (63) that

�〈L〉i = 0 + an even function of E ∀ i. (67)

Hence, for nondegenerate states of a nonpiezoelectric system,
the system length does not change sign when the electric field
changes sign, and the piezoelectric constants vanish identi-
cally. Numerical results verify that this conclusion also holds
for degenerate states.

B. Piezoelectric system

For the piezoelectric system,

HE = qE la − qE l − qE l + qE lb = qE (lb + la − 2l ). (68)

It follows from Eq. (58) that the electric-field-induced
change in polarization is proportional to the change in system
length for the piezoelectric system

�P = −q(�la + �lb) = −q�L, (69)

thus

�〈P〉i = −q�〈L〉i, (70)

where

�〈L〉i = 〈ψi,E |L|ψi,E〉 − 〈ψi,E=0|L|ψi,E=0〉
= 〈ψi,E − ψi,E=0|L|ψi,E=0〉 + 〈ψi,E=0|L|ψi,E

− ψi,E=0〉 + O(E2). (71)

Note that it follows from both nondegenerate and degenerate
perturbation theory that |ψi,E − ψi,E=0〉 is O(E ) and of the
same symmetry as |ψi,E=0〉. Thus, since L is unchanged with
respect to interchanging la and lb, �〈L〉i is generally nonzero.

In analogy with the quantum-mechanical definition of the
piezoelectric constants for two point charges connected by
a spring, the quantized piezoelectric constants for the Auld
system of four point charges and two springs are

di = �〈L〉i

�E . (72)

Since �〈L〉i is generally nonzero, the piezoelectric constants
di are nonzero as well. Sometimes, it is convenient to calculate
the piezoelectric constants in terms of the ratio between the
change in strain and the change in electric field,

d̃i = �〈L〉i/〈L〉i

�E . (73)
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FIG. 6. Auld’s system of four point charges and two springs. The illustration shows the response of a piezoelectric system to an applied
electric field. The spring deformations shown in the figure correspond to either the nonpiezoelectric case where q2 = −q1; q3 = q2; q4 = q1,
or the piezoelectric case where q2 = −q1; q3 = −q2; q4 = −q1.

FIG. 7. Auld’s system of four point charges and two springs (non-piezoelectric system). The charges counted from left to right take the
values q1 = +q, q2 = −q, q3 = −q, and q4 = +q. The system length la + lb is unchanged subject to the application of a small electric field.
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FIG. 8. Auld’s piezoelectric system of four point charges and two springs (piezoelectric system). Charges from left to right take the values
q1 = +q, q2 = −q, q3 = q, and q4 = −q. The system length la + lb changes subject to the application of a small electric field.

X. TEMPERATURE DEPENDENCE
OF THE PIEZOELECTRIC CONSTANT

We will now briefly discuss how the temperature depen-
dence of the piezoelectric constant for a simple system weakly
coupled to its environment can be found using the general
approach of statistical physics [43]. For any operator X of a
quantum system, the temperature dependence of the average
of X is given by

〈X 〉 = Tr(ρX ) =
∑

i

〈i|ρX |i〉, (74)

where the summation is over all eigenstates |i〉 and ρ is the
statistical weight

ρ = exp(−βH )

Z (β )
. (75)

In Eq. (75), H is the system Hamiltonian operator, β =
1/(kBT ), kB is Boltzmann’s constant, T is the temperature,
and Z (β ) is the partition function defined by

Z (β ) = Tr(exp(−βH )). (76)

The temperature dependence of the piezoelectric constant
di(T ) can now be determined by calculating the change in the
average system length due to a change in the electric field,

di(T ) = �Tr(ρL)

�E , (77)

where L is the system-length operator.

XI. NUMERICAL RESULTS FOR AULD’S
PIEZOELECTRIC QUANTUM SYSTEM

A. Eigenstates and energies when E = 0

In Fig. 9, the first several wave functions of the Hamil-
tonian in Eq. (57) are shown. The parameters used in the
calculation are listed in Table I. Similar to the nonpiezoelectric
system, the unperturbed Hamiltonian H of the piezoelectric
system (i.e., the Hamiltonian in the absence of HE ) is sym-
metric upon interchanging la and lb. Therefore, all eigenstates
of H are also eigenstates of the operator T that interchanges la
and lb (with eigenvalues ±1), i.e., T and H commute. Hence,
all energy eigenstates of H can be assigned as symmetric or
antisymmetric upon interchanging la and lb. Observe that the
ground state S1 with energy −124.78 eV is nondegenerate
and symmetric upon interchanging la and lb while the second

TABLE I. Parameters for the piezoelectric system associated
with the Hamiltonian in Eq. (57).

Parameters Value Description

L 1.0 × 10−8 [m] Computational domain length
l 5.0 × 10−10 [m] Position of the fixed charge (q2, q3)
l0 1.0 × 10−9 [m] Position of the moving charge (q1, q4)
ε0 8.85 × 10−12[F/m] Vacuum dielectric constant
kC 9 × 109 [N m2/C2] Coulomb constant
k 5 [N/m] Elastic coefficient of spring
E0 1.0 × 10−7 [V/m] Electric field intensity
q 1.6 × 10−19 [C] Unit charge
m1 9.1 × 10−31 [kg] Mass of charge q1

m4 9.1 × 10−31 [kg] Mass of charge q4
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FIG. 9. The first five wave functions S1, A2, S2, A3, S3 and a higher excited state (the second nondegenerate state) S22 for Auld’s
piezoelectric system shown in Fig. 8. S1 is the ground state and the first nondegenerate symmetric state (energy −124.78 eV; top left panel). A2
and S2 are antisymmetric and symmetric degenerate states, respectively, with the (same) second-lowest energy (energy −63.14 eV; top right
and middle left panels). A3 and S3 are antisymmetric and symmetric degenerate states with the (same) third-lowest energy (energy −61.72 eV;
middle right and lower left panels). S22 is a higher-excited symmetric state and the second nondegenerate state (energy −1.46 eV; lower right
panel).
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FIG. 10. Energy changes as a function of electric field for the piezoelectric and the nonpiezoelectric systems shown in Figs. 7 and 8.
Energies for states S1, S2, S3, are S4 are shown in the top left, top right, middle left, and middle right panels. The energy change of S1 due
to an applied electric field is vanishingly small to computational accuracy for both the piezoelectric and the nonpiezoelectric systems. Note
that the states S2 and A2 share the same energy dependence on the electric field. The same applies to the states S3 and A3, and a similar result
holds for states S4 and A4, etc. The two lower panels correspond to the second nondegenerate state (lower left) and the third nondegenerate
state (lower right).
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FIG. 11. Piezoelectric constants d̃i = �〈L〉i/〈L〉i
�E computed for

different eigenstates of Auld’s piezoelectric system shown in Fig. 8.

(A2) and third (S2) states are degenerate (energy −63.14 eV)
and antisymmetric and symmetric upon interchanging la and
lb, respectively. Similarly, the fourth (A3) and fifth (S3) states
are degenerate (−61.72 eV) antisymmetric and symmetric
states upon interchanging la and lb, respectively. The sixth
state shown in the plot is the first-higher excited nondegen-
erate symmetric state S22 with energy −1.46 eV.

B. Energy changes due to an external electric field

In Fig. 10 changes in the first several eigenstate energies
with the application of an external electric field are listed.
Note that since the ground-state expectation values of the
operators la and lb both are equal to l (corresponding to com-
pletely compressed springs) the electric-field perturbation of
the piezoelectric system [Eq. (68)] does not affect the ground-
state energy since HE ∝ lb + la − 2l . Hence the ground-state
energy is independent of the electric field to first order in the
electric field. In contrast, all other state eigenstates depend on
the electric field including the higher-excited nondegenerate
states. Observe also that the energies of the nonpiezoelectric
system (Fig. 7) are even functions of the applied electric

field which is in accordance with symmetry as discussed
above.

C. Piezoelectric constants

The piezoelectric constants associated with the different
eigenstates of the piezoelectric system (Fig. 8) depend on
the specific eigenstate for any fixed parameter set (Fig. 11).
This quantum-mechanical result is fundamentally different
compared to the classical piezoelectricity result for which the
piezoelectric constant is a constant. Observe that the ground
state is characterized by a very small piezoelectric constant
d̃1 = �〈L〉1/〈L〉1

�E = −9.37 × 10−15 m/V due to its sharp local-
ization at la = lb = l using first-order perturbation theory. The
first six exited states (S2, A2, S3, A3, S4, A4) show substan-
tially stronger piezoelectricity than the ground state (a factor
of 100–1000 higher) since the former states are much less
localized in la − lb space as inspection of Fig. 9 reveals. Note
that the order of magnitude for the largest d̃i constants are sim-
ilar to those of known piezoelectric semiconductors (GaAs,
ZnO). Our results also confirm that for the nonpiezoelectric
system (Fig. 7) the piezoelectric constant is zero for all states
to computational accuracy as it must be from symmetry.

XII. CONCLUSIONS

The piezoelectric d constant of a simple one-dimensional
classical inversion-asymmetric assembly of electric point
charges and mechanical springs is known to be a constant but
dependent on the electric charge values and the mechanical
spring constants. In the present work, it is demonstrated that
if the Schrödinger Hamiltonian of the same system of electric
charges and mechanical springs is solved subject to open
boundary conditions with respect to the moving charges, the
piezoelectric constant, defined as the ratio between the expec-
tation value of the system length and the applied electric field,
becomes quantized and eigenstate dependent. It is shown that
the piezoelectric constant vanishes if the system Hamiltonian
is inversion-symmetric. Numerical results for eigenstates and
eigenstate-dependent piezoelectric constants are discussed for
two piezoelectric assemblies of point charges and mechanical
springs.
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