Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Contents

Introduction Symbols and definitions

Part A

Diffraction and imaging of elastically scattered electrons

Chapter 1. Basic kinematical electron diffraction

1.1	Wave properties of electrons
1.2	Plane wave
1.3	Single atom scattering
1.4	Mott formula
1.5	Kinematical electron diffraction in thin crystals
1.6	Reciprocal space
1.7	Bragg's law
1.8	Abbe's imaging theory
1.9	Some mathematical operations
	1.9.1 Fourier transformation
	1.9.2 Convolution calculation
	1.9.3 Dirac delta function
Chapter 2.	Dynamical elastic electron scattering I: Bloch wave theory
2.1	Relativistic corrections in single-electron scattering theory
2.2	Bethe theory
	2.2.1 Basic equations
	2.2.2 Characteristics of Bloch waves
	2.2.3 Orthonormal relationship of Bloch waves
	2.2.4 Bethe theory and band structure theory
2.3	Two-beam theory
2.4	Dispersion surfaces
2.5	Applications in CBED
2.6	Critical voltage effect
2.7	
	Diffraction of layered materials
2.8	Diffraction of layered materials HOLZ reflections

2.9	Real space Bloch wave theory of ZOLZ reflections
	2.9.1 Projected potential approximation
	2.9.2 ZOLZ reflections
	2.9.3 Effects of HOLZ reflections
2.10	Diffraction contrast images of imperfect crystals
	2.10.1 Potential of imperfect crystals
	2.10.2 Modified Bloch wave theory
	2.10.3 Column approximation
	2.10.4 Howie-Whelan equation
	2.10.5 a coefficient method
2.11	Weak beam imaging
2.12	

- 2.12 Absorption effect in dynamical calculations
- 2.13 Summary

Chapter 3. Dynamical elastic electron scattering II: multislice theory

3.1	Physical optics approach
	3.1.1 Phase object approximation
	3.1.2 Huygens' principle
	3.1.3 Multislice theory
3.2	Quantum mechanical basis of multislice theory
	3.2.1 Inclined incident beam case
	3.2.2 Multislice solution of Schršdinger equation
3.3	Simulations of HRTEM images and electron microdiffraction patterns
3.4	Calculations of HOLZ reflections
3.5	Improved multislice approaches
	3.5.1 Modified multislice theory for ZOLZ reflections
	3.5.2 Modified multislice theory for HOLZ reflections
3.6	Effect of magnetic field
3.7	Summary

Chapter 4. Dynamical elastic electron scattering III: other approaches

4.1	Scattering matrix theory
4.2	Green's function theory
4.3	Semi-reciprocal space method
4.4	Scattering operator in electron diffraction
4.5	Diffraction in imperfect crystals
4.6	Equivalence among various theories
4.7	Comparison of Bloch wave and multislice theories

Chapter 5. Diffraction and imaging of reflected high-energy electrons from bulk crystal surfaces

- 5.1 Geometry of RHEED
- 5.2 Bloch wave theory
- 5.3 Parallel-to-surface multislice theories
 - 5.3.1 Method I
 - 5.3.2 Method II
- 5.4 Perpendicular-to-surface multislice theory
- 5.5 Electron reflection process in RHEED
- 5.6 Thermal diffuse scattering in RHEED
- 5.7 Summary

Part B

Diffraction and imaging of inelastically scattered electrons

Chapter 6. Inelastic excitations and "absorption" effect in electron diffraction

6.1	Kikuchi patterns
	6.1.1 Formation of Kikuchi patterns
	6.1.2 Inelastic excitations in crystals
	6.1.3 Bremsstrahlung radiation
	6.1.4 Electron Compton scattering
6.2	Yoshioka's equations for inelastically scattered electrons
	6.2.1 Basic equations
	6.2.2 Incoherence and coherence of inelastically scattered electrons
	6.2.3 Conservation of intensity
	6.2.4 "Absorption" phenomenon
6.3	Effects of inelastic excitations on elastic wave
	6.3.1 Mixed dynamic form factor
	6.3.2 Absorption potential - reciprocal space description
	6.3.3 Absorptionl potential - real space description
	6.3.4 Interpretation of imaginary potential
	6.3.5 Effect of inelastic absorption in quantitative electron microscopy
	6.3.6 Virtual inelastic scattering
6.4	Inelastic scattering process I: phonon excitation
	6.4.1 Phonons in crystals
	6.4.2 Effect of atomic vibrations on crystal potential
	6.4.3 Electron-phonon interactions
	6.4.4 Phonon dispersion surfaces
	6.4.5 Debye-Waller factor
	6.4.6 Mixed dynamic form factor for multi-phonon excitations

	6.4.7 Absorption potential
6.5	Inelastic scattering process II: valence excitation
	6.5.1 Dielectric response theory of valence excitations
	6.5.2 Mean-free-path and absorption potential
	6.5.3 Interface and surface excitations
	6.5.4 Mixed dynamic form factor and generalized dielectric function
6.6	Inelastic scattering process III: atomic inner-shell excitation
	6.6.1 Excitation matrix
	6.6.2 Absorption potential
6.7	Diffraction and channeling effects in x-ray and Auger electron emissions
	6.7.1 Localization in atomic inner-shell excitation
	6.7.2 Delocalization in electron impact ionization in crystals
6.8	Minimum momentum transfer in inelastic scattering
	6.8.1 Conservation of energy
	6.8.2 Conservation of momentum
6.9	Summary

Chapter 7. Semi-classical theory of thermal diffuse scattering

7.1	"Frozen" lattice model
7.2	Two-beam TDS theory
7.3	Total absorption coefficient
7.4	Many-beam TDS theory
7.5	Multi-phonon excitations
7.6	Evaluation of Debye-Waller factor
7.7	Coherent length in thermal diffuse scattering
7.8	Diffuse scattering of imperfect crystals
	7.8.1 Huang scattering
	7.8.2 Diffuse scattering produced by point defects
7.9	Summary

Chapter 8. Dynamical inelastic electron scattering I: Bloch wave theory

8.1	Solutions of	Yoshioka's	equations
-----	--------------	------------	-----------

- 8.2 Iterative method
- 8.3 Diffraction of single-inelastically scattered electrons
- 8.4 Theory of Kikuchi patterns
- 8.5 Diffraction of double-inelastically scattered electrons
- 8.6 "Coherent" double inelastic scattering under delta function localization approximation
- 8.7 Diffraction contrast imaging of inelastically scattered electrons

8.7.1 Images of stacking faults
8.7.2 Solution of Yoshioka's equations for imperfect crystals
8.7.3 Diffraction contrast imaging of single-inelastically scattered electrons
8.8 Summary

Chapter 9. Reciprocity in electron diffraction and imaging

- 9.1 Reciprocity theorem for elastically scattered electrons
- 9.2 Equivalence of TEM and STEM
- 9.3 Reciprocity theorem for inelastically scattered electrons
- 9.4 Summary

Chapter 10. Dynamical inelastic electron scattering II: Green's function theory

10.1	Generalized reciprocity theorem
10.2	Fourier transform of Green's function
10.3	First order TDS
10.4	Atomic inner-shell single-inelastic excitation
10.5	Double-inelastic electron scattering
10.6	Summary

Chapter 11. Dynamical inelastic electron scattering III: multislice theory

- 11.1 Multislice solution of Yoshioka's equations
- 11.2 Conservation of total electrons
- 11.3 First order results
- 11.4 Special cases of only one excited state
 - 11.4.1 Valence-loss scattering
 - 11.4.2 Thermal diffuse scattering
- 11.5 Imaging with TDS electrons in STEM
 - 11.5.1 Image formation
 - 11.5.2 Contribution of Bragg reflected electrons
 - 11.5.3 Contribution of TDS electrons
 - 11.5.4 Effects of multi-phonon and multiple phonon scattering
 - 11.5.5 Effects of coherent TDS
 - 11.5.6 Detection geometry and coherence in HAADF-STEM imaging
- 11.6 Imaging with TDS electrons in TEM
 - 11.6.1 Image formation
 - 11.6.2 Incoherent imaging theory
- 11.7 Effect of phase correlation between atom vibrations in TDS electron imaging
- 11.8 Effect of Huang scattering in composition sensitive imaging

- 11.9 Resolution of incoherent image
- 11.10 Real space multislice theory of TDS
 - 11.10.1 Basic equations
 - 11.10.2 Atomic number sensitive imaging in STEM an "exact" theory
 - 11.10.3 Multislice calculation of dynamical scattering operator Op
 - 11.10.4 Atomic number sensitive imaging in TEM an "exact" theory
 - 11.10.5 Dislocation contrast due to Huang scattering
- 11.11 Summary

Chapter 12. Dynamical inelastic electron scattering IV: modified multislice theory

12.1	General theory
12.2	Single inelastic scattering
12.3	Equivalence with multislice theory
12.4	Absorption function
12.5	Localized inelastic scattering
12.6	Diffraction of TDS electrons - semi-classical approach
	12.6.1 Basic equations
	12.6.2 Streaks in TDS electron diffraction patterns
12.7	Diffraction of phonon scattered electrons - quantum mechanical approach
	12.7.1 Fundamental treatment
	12.7.2 Diffraction patterns of phonon scattered electrons
	12.7.3 Directions of TDS streaks
12.8	Equivalence of frozen lattice model and phonon excitation theory for TDS
12.9	Diffraction of atomic inner-shell scattered electrons

12.10 Summary

Chapter 13. Inelastic scattering in high-resolution transmission electron imaging

- 13.1.1 Diffraction of valence-loss electrons
- 13.1.2 Energy-filtered HRTEM images of valence-loss electrons
- 13.1.3 Approaching the completely delocalized scattering model
- 13.1.4 Perturbation theory for calculating Y
- 13.1.5 Effect of surface plasmon excitation
- 13.1.6 Energy-filtered inelastic images of interfaces
- 13.2 Contribution of phonon scattered electrons
- 13.3 TDS in high-resolution off-axis electron holography
 - 13.3.1 Electron holography with time-dependent perturbation
 - 13.3.2 Multislice calculation of <F>
 - 13.3.3 Inelastic scattering in electron holography

13.4 Summary

Chapter 14. Multiple inelastic electron scattering

- 14.1 Transport equation theory
 - 14.1.1 Energy distribution of plural inelastically scattered electrons
 - 14.1.2 Angular distribution of plural inelastically scattered electrons
- 14.2 Improved theories
- 14.3 Density matrix theory of electron diffraction
 - 14.3.1 Kinetic equation of multiple inelastic electron scattering
 - 14.3.2 Absorption effect in calculation of Green's function
 - 14.3.3 Delocalized multiple inelastic scattering
- 14.4 A modified multislice theory
 - 14.4.1 Double-inelastic scattering
 - 14.4.2 Ã function
 - 14.4.3 Multiple scattering theory
 - 14.4.4 Multiple phonon scattered electrons in HAADF-STEM imaging
- 14.5 Summary

Chapter 15. Inelastic excitation of crystals in thermal equilibrium with environment

- 15.1 Basic equations
- 15.2 Electron images and diffraction patterns
- 15.3 Solution of fluctuating component
- 15.4 Contributions of fluctuating components to electron diffraction pattern and image
- 15.5 Non-fluctuating inelastic component
- 15.6 Absorption effect for elastic wave
- 15.7 Applications in phonon scattering
- Appendix A: Physical constants, electron wavelengths and wavenumbers
- Appendix B: Properties of Fourier transforms
- Appendix C: Some properties of Dirac delta function
- Appendix D: Integral form of Schršdinger equation
- Appendix E: Some mathematical identities

References

Index