Reflection Electron Microscopy and Spectroscopy for Surface Analysis

Z. L. Wang Georgia Institute of Technology Atlanta, Georgia, USA

Published by Cambridge University Press (May, 1996) 40 West 20th Street, New York, NY 10011-4211

456 pp, ISBN: 0 521 48266 6

Contents Preface List of symbols Introduction Historical background Scope of the book

Chapter 1. Kinematical electron diffraction

- 1.1 Electron wavelength
- 1.2 Plane wave representation of incident electron
- 1.3 Born approximation and single atom scattering
- 1.4 Fourier transformation
- 1.5 Scattering factor and charge density function
- 1.6 Single scattering theory
- 1.7 Reciprocal space and reciprocal lattice vector
- 1.8 Bragg's law and Ewald sphere
- 1.9 Abbe's imaging theory
- 1.10 Phase object approximation
- 1.11 Aberration and contrast transfer function

Part A: Diffraction of reflected electrons

Chapter 2 Reflection high-energy electron diffraction

- 2.1 Geometry of RHEED
- 2.2 Surface crystallography
 - 2.2.1 Surface reconstruction
 - 2.2.2 Two-dimensional reciprocal space

- 2.3 Streaks and Laue rings in RHEED
- 2.4 Determination of surface structures
- 2.5 RHEED oscillation and its application in MBE crystal growth
- 2.6 Kinematical diffraction theory of RHEED
- 2.7 Kikuchi pattern in RHEED

Chapter 3. Dynamical theories of RHEED

- 3.1 Bloch wave theory
- 3.2 Parallel-to-surface multislice theories I
- 3.3 Parallel-to-surface multislice theories II
- 3.4 Perpendicular-to-surface multislice theory
 - 3.4.1 Multislice solution of Schršdinger equation for transmission electron diffraction
 - 3.4.2 Applications in RHEED calculations
- 3.5 Diffraction of disordered and stepped surfaces
 - 3.5.1 A perturbation theory
 - 3.5.2 Stepped surface

Chapter 4. Resonance reflections in RHEED

- 4.1 Phenomenon
- 4.2 Resonance parabola and resonance condition
- 4.3 Width of resonance parabola
- 4.4 Kikuchi envelope
- 4.5 Dynamical calculations of resonance scattering
 - 4.5.1 Low incident angle resonance
 - 4.5.2 High incident angle resonance
 - 4.5.3 Resonance at stepped Surface
 - 4.5.4 Steady state wave at surface
- 4.6 Effect of valence excitation in resonance reflection4.6.1 A simplified theory
 - 4.6.2 Effect on surface resonance
- 4.7 Enhancement of inelastic scattering signals under resonance condition

Part B: Imaging of reflected electrons

Chapter 5. Imaging surfaces in TEM

- 5.1 Techniques for studying surfaces in TEM5.1.1 Imaging using surface-layer reflections5.1.2 Surface profile imaging
 - 5.1.3 REM of bulk crystal surface
- 5.2 Surface preparation techniques
- 5.3 Experimental technique of REM

- 5.3.1 Mounting specimens
- 5.3.2 Microscope pre-alignment
- 5.3.3 Forming REM images
- 5.3.4 Diffracting condition for REM imaging
- 5.3.5 Image recording techniques
- 5.4 Foreshortening effect
- 5.5 Surface refraction effect
- 5.6 Mirror-images in REM
- 5.7 Surface mis-cut angle and step height
- 5.8 Determining surface orientations
- 5.9 Determining step direction

Chapter 6. Contrast mechanisms of reflected electron imaging

- 6.1 Phase contrast
- 6.2 Diffraction contrast
- 6.3 Spatial incoherence in REM imaging
- 6.4 Source coherence and surface sensitivity
- 6.5 Effect of energy filtering
- 6.6 Determining the nature of surface steps and dislocations6.6.1 Step height
 - 6.6.2 Down and up steps
- 6.7 REM image resolution
- 6.8 High resolution REM
 - 6.8.1 Imaging reconstructed layer
 - 6.8.2 Fourier image
- 6.9 Depth of field and depth of focus
- 6.10 Double images of surface steps
- 6.11 Surface contamination

Chapter 7. Applications of UHV REM

- 7.1 UHV microscope and specimen cleaning
- 7.2 In-situ reconstruction on clean surfaces
- 7.3 Surface atom deposition and nucleation processes
- 7.4 Surface-gas reaction
- 7.5 Surface electromigration
- 7.6 Surface ion bombardment
- 7.7 Surface activation energy

Chapter 8. Applications of non-UHV REM

- 8.1 Steps and dislocation on metal surfaces
- 8.2 Steps on semiconductor surfaces

- 8.3 Ceramics surfaces
- 8.4 In-situ dynamic processes on ceramics surfaces
- 8.5 Surface atomic termination and radiation damage
- 8.6 Reconstruction of ceramic surfaces
- 8.7 Imaging planar defects
- 8.8 As-grown and polished surfaces

Part C: Inelastic scattering and spectrometry of reflected electrons

Chapter 9. Phonon scattering in RHEED

- 9.1 Inelastic excitations in crystals
- 9.2 Phonon excitation
 - 9.2.1 Phonons
 - 9.2.2 Effect of atomic vibrations on crystal potential
 - 9.2.3 Electron-phonon interactions
- 9.3 "Frozen" lattice model
- 9.4 Calculation of Debye-Waller factor
- 9.5 Kinematical TDS scattering in RHEED
- 9.6 Dynamical TDS in RHEED
 - 9.6.1 Reciprocity theorem
 - 9.6.2 Fourier transform of Green's function
 - 9.6.3 Green's function theory
 - 9.6.4 A modified parallel-to-surface multislice theory

Chapter 10. Valence excitation in RHEED

- 10.1 EELS spectra of bulk crystal surfaces
- 10.2 Dielectric response theory of valence excitations
- 10.3 Interface and surface excitations
 - 10.3.1 Classical energy-loss theory
 - 10.3.2 Localization effect in surface excitation
- 10.4 Average number of plasmon excitations in RHEED
- 10.5 Excitation of a sandwich layer
- 10.6 Dielectric response theory with relativistic correction

10.6.1 Maxwell's equations

- 10.6.2 Valence excitation near an interface
- 10.6.3 Transverse force on incident electron
- 10.6.4 Calculation of REELS spectra
- 10.7 Quantum theory of valence excitation
 - 10.7.1 Quantum mechanical basis of classical theory
 - 10.7.2 Density operator and dielectric response theory
- 10.8 Determination of surface phases

10.9 Multiple scattering effect

10.9.1 Poisson's distribution law

10.9.2 Measurement of electron penetration depth

10.9.3 Measurement of electron mean traveling distance along surface

Chapter 11. Atomic inner-shell excitations in RHEED

- 11.1 Excitation of atomic inner shell electrons
- 11.2 Atomic inner shell excitation in reflection mode
- 11.3 Surface ELNES
- 11.4 Surface EXELFS
- 11.5 Surface chemical microanalysis
- 11.6 Effect of strong Bragg beams
- 11.7 Resonance and channeling effects
- 11.8 Effective ionization cross-section
- 11.9 Impurity segregation at surfaces
- 11.10 Oxygen adsorption on surface
- 11.11 REELS in MBE

Chapter 12. Novel techniques associated with reflection electron imaging

- 12.1 Scanning reflection electron microscopy
 - 12.1.1 Imaging surface steps
 - 12.1.2 Imaging dislocations
- 12.2 Secondary electron imaging of surfaces
- 12.3 EDS in RHEED geometry
- 12.4 Electron holography of surfaces 12.4.1 Principle and theory
 - 12.4.2 Surface holography
- 12.5 REM-STM 12.5.1 Atomic resolution STM image
 - 12.5.2 Artifacts in STM imaging
- 12.6 Time-resolved REM and REM-PEEM
- 12.7 Total-reflection x-ray spectroscopy in RHEED
- 12.8 Surface wave excitation Auger electron spectroscopy
- 12.9 LEED and LEEM

Appendix A: Physical constants, electron wavelengths and wave numbers

- Appendix B: Crystal inner potential and atomic scattering factor
- Appendix C.1: Crystallographic structure systems
- Appendix C.2: FORTRAN program for calculating crystallographic data
- Appendix D: Electron diffraction patterns of several types of crystal structures

Appendix E: FORTRAN programs

E.1 Single-loss spectra of a thin crystal slab in TEM

E.2 Single-loss REELS spectra in RHEED

E.3 Single-loss spectra of parallel-to-surface incident beam

E.4 Single-loss spectra of interface excitation in TEM

Appendix F: Bibliography of REM, SREM and REELS References

Index